标签: Glide

Android图片加载框架*全解析(八),带你全面了解Glide 4的用法

本篇将是我们这个Glide系列的*后一篇文章。

其实在写这个系列*篇文章的时候,Glide就推出4.0.0的RC版了。那个时候因为我一直研究的都是Glide 3.7.0版本,再加上RC版本还不太稳定,因此整个系列也都是基于3.7.0版本来写的。

而现在,Glide的*新版本已经出到了4.4.0,可以说Glide 4已经是相当成熟和稳定了。而且也不断有朋友一直在留言,想让我讲一讲Glide 4的用法,因为Glide 4相对于Glide 3改动貌似还是挺大的,学完了Glide 3再去使用Glide 4,发现根本就无法使用。

OK,那么今天就让我们用《带你全面了解Glide 4的用法》这样一篇文章,给这个Glide系列画上一个圆满的句号。

Glide 4概述

刚才有说到,有些朋友觉得Glide 4相对于Glide 3改动非常大,其实不然。之所以大家会有这种错觉,是因为你将Glide 3的用法直接搬到Glide 4中去使用,结果IDE全面报错,然后大家可能就觉得Glide 4的用法完全变掉了。

其实Glide 4相对于Glide 3的变动并不大,只是你还没有了解它的变动规则而已。一旦你掌握了Glide 4的变动规则之后,你会发现大多数Glide 3的用法放到Glide 4上都还是通用的。

我对Glide 4进行了一个大概的研究之后,发现Glide 4并不能算是有什么突破性的升级,而更多是一些API工整方面的优化。相比于Glide 3的API,Glide 4进行了更加科学合理地调整,使得易读性、易写性、可扩展性等方面都有了不错的提升。但如果你已经对Glide 3非常熟悉的话,并不是就必须要切换到Glide 4上来,因为Glide 4上能实现的功能Glide 3也都能实现,而且Glide 4在性能方面也并没有什么提升。

但是对于新接触Glide的朋友而言,那就没必要再去学习Glide 3了,直接上手Glide 4就是*佳的选择了。

好了,对Glide 4进行一个基本的概述之后,接下来我们就要正式开始学习它的用法了。刚才我已经说了,Glide 4的用法相对于Glide 3其实改动并不大。在前面的七篇文章中,我们已经学习了Glide 3的基本用法、缓存机制、回调与监听、图片变换、自定义模块等用法,那么今天这篇文章的目标就很简单了,就是要掌握如何在Glide 4上实现之前所学习过的所有功能,那么我们现在就开始吧。

开始

要想使用Glide,首先需要将这个库引入到我们的项目当中。新建一个Glide4Test项目,然后在app/build.gradle文件当中添加如下依赖:

dependencies {
    implementation 'com.github.bumptech.glide:glide:4.4.0'
    annotationProcessor 'com.github.bumptech.glide:compiler:4.4.0'
}

 

注意,相比于Glide 3,这里要多添加一个compiler的库,这个库是用于生成Generated API的,待会我们会讲到它。

另外,Glide中需要用到网络功能,因此你还得在AndroidManifest.xml中声明一下网络权限才行:

<uses-permission android:name="android.permission.INTERNET" />

 

就是这么简单,然后我们就可以自由地使用Glide中的任意功能了。

加载图片

现在我们就来尝试一下如何使用Glide来加载图片吧。比如这是一张图片的地址:

http://guolin.tech/book.png

 

然后我们想要在程序当中去加载这张图片。

那么首先打开项目的布局文件,在布局当中加入一个Button和一个ImageView,如下所示:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:orientation="vertical">

    <Button
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="Load Image"
        android:onClick="loadImage"
        />

    <ImageView
        android:id="@+id/image_view"
        android:layout_width="match_parent"
        android:layout_height="match_parent" />

</LinearLayout>

 

为了让用户点击Button的时候能够将刚才的图片显示在ImageView上,我们需要修改MainActivity中的代码,如下所示:

public class MainActivity extends AppCompatActivity {

    ImageView imageView;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        imageView = (ImageView) findViewById(R.id.image_view);
    }

    public void loadImage(View view) {
        String url = "http://guolin.tech/book.png";
        Glide.with(this).load(url).into(imageView);
    }

}

 

没错,就是这么简单。现在我们来运行一下程序,效果如下图所示:

%title插图%num可以看到,一张网络上的图片已经被成功下载,并且展示到ImageView上了。

你会发现,到目前为止,Glide 4的用法和Glide 3是完全一样的,实际上核心的代码就只有这一行而已:

Glide.with(this).load(url).into(imageView);

 

仍然还是传统的三步走:先with(),再load(),*后into()。对这行代码的解读,我在 Android图片加载框架*全解析(一),Glide的基本用法 这篇文章中讲解的很清楚了,这里就不再赘述。

好了,现在你已经成功入门Glide 4了,那么接下来就让我们学习一下Glide 4的更多用法吧。

占位图

观察刚才加载网络图片的效果,你会发现,点击了Load Image按钮之后,要稍微等一会图片才会显示出来。这其实很容易理解,因为从网络上下载图片本来就是需要时间的。那么我们有没有办法再优化一下用户体验呢?当然可以,Glide提供了各种各样非常丰富的API支持,其中就包括了占位图功能。

顾名思义,占位图就是指在图片的加载过程中,我们先显示一张临时的图片,等图片加载出来了再替换成要加载的图片。

下面我们就来学习一下Glide占位图功能的使用方法,首先我事先准备好了一张loading.jpg图片,用来作为占位图显示。然后修改Glide加载部分的代码,如下所示:

RequestOptions options = new RequestOptions()
        .placeholder(R.drawable.loading);
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

没错,就是这么简单。这里我们先创建了一个RequestOptions对象,然后调用它的placeholder()方法来指定占位图,再将占位图片的资源id传入到这个方法中。*后,在Glide的三步走之间加入一个apply()方法,来应用我们刚才创建的RequestOptions对象。

不过如果你现在重新运行一下代码并点击Load Image,很可能是根本看不到占位图效果的。因为Glide有非常强大的缓存机制,我们刚才加载图片的时候Glide自动就已经将它缓存下来了,下次加载的时候将会直接从缓存中读取,不会再去网络下载了,因而加载的速度非常快,所以占位图可能根本来不及显示。

因此这里我们还需要稍微做一点修改,来让占位图能有机会显示出来,修改代码如下所示:

RequestOptions options = new RequestOptions()
        .placeholder(R.drawable.loading)
        .diskCacheStrategy(DiskCacheStrategy.NONE);
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

可以看到,这里在RequestOptions对象中又串接了一个diskCacheStrategy()方法,并传入DiskCacheStrategy.NONE参数,这样就可以禁用掉Glide的缓存功能。

关于Glide缓存方面的内容我们待会儿会进行更详细的讲解,这里只是为了测试占位图功能而加的一个额外配置,暂时你只需要知道禁用缓存必须这么写就可以了。

现在重新运行一下代码,效果如下图所示:

%title插图%num可以看到,当点击Load Image按钮之后会立即显示一张占位图,然后等真正的图片加载完成之后会将占位图替换掉。

除了这种加载占位图之外,还有一种异常占位图。异常占位图就是指,如果因为某些异常情况导致图片加载失败,比如说手机网络信号不好,这个时候就显示这张异常占位图。

异常占位图的用法相信你已经可以猜到了,首先准备一张error.jpg图片,然后修改Glide加载部分的代码,如下所示:

RequestOptions options = new RequestOptions()
        .placeholder(R.drawable.ic_launcher_background)
        .error(R.drawable.error)
        .diskCacheStrategy(DiskCacheStrategy.NONE);
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

很简单,这里又串接了一个error()方法就可以指定异常占位图了。

其实看到这里,如果你熟悉Glide 3的话,相信你已经掌握Glide 4的变化规律了。在Glide 3当中,像placeholder()、error()、diskCacheStrategy()等等一系列的API,都是直接串联在Glide三步走方法中使用的。

而Glide 4中引入了一个RequestOptions对象,将这一系列的API都移动到了RequestOptions当中。这样做的好处是可以使我们摆脱冗长的Glide加载语句,而且还能进行自己的API封装,因为RequestOptions是可以作为参数传入到方法中的。

比如你就可以写出这样的Glide加载工具类:

public class GlideUtil {

    public static void load(Context context,
                            String url,
                            ImageView imageView,
                            RequestOptions options) {
        Glide.with(context)
             .load(url)
             .apply(options)
             .into(imageView);
    }

}

 

指定图片大小

实际上,使用Glide在大多数情况下我们都是不需要指定图片大小的,因为Glide会自动根据ImageView的大小来决定图片的大小,以此保证图片不会占用过多的内存从而引发OOM。

不过,如果你真的有这样的需求,必须给图片指定一个固定的大小,Glide仍然是支持这个功能的。修改Glide加载部分的代码,如下所示:

RequestOptions options = new RequestOptions()
        .override(200, 100);
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

仍然非常简单,这里使用override()方法指定了一个图片的尺寸。也就是说,Glide现在只会将图片加载成200*100像素的尺寸,而不会管你的ImageView的大小是多少了。

如果你想加载一张图片的原始尺寸的话,可以使用Target.SIZE_ORIGINAL关键字,如下所示:

RequestOptions options = new RequestOptions()
        .override(Target.SIZE_ORIGINAL);
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

这样的话,Glide就不会再去自动压缩图片,而是会去加载图片的原始尺寸。当然,这种写法也会面临着更高的OOM风险。

缓存机制

Glide的缓存设计可以说是非常先进的,考虑的场景也很周全。在缓存这一功能上,Glide又将它分成了两个模块,一个是内存缓存,一个是硬盘缓存。

这两个缓存模块的作用各不相同,内存缓存的主要作用是防止应用重复将图片数据读取到内存当中,而硬盘缓存的主要作用是防止应用重复从网络或其他地方重复下载和读取数据。

内存缓存和硬盘缓存的相互结合才构成了Glide*佳的图片缓存效果,那么接下来我们就来分别学习一下这两种缓存的使用方法。

首先来看内存缓存。

你要知道,默认情况下,Glide自动就是开启内存缓存的。也就是说,当我们使用Glide加载了一张图片之后,这张图片就会被缓存到内存当中,只要在它还没从内存中被清除之前,下次使用Glide再加载这张图片都会直接从内存当中读取,而不用重新从网络或硬盘上读取了,这样无疑就可以大幅度提升图片的加载效率。比方说你在一个RecyclerView当中反复上下滑动,RecyclerView中只要是Glide加载过的图片都可以直接从内存当中迅速读取并展示出来,从而大大提升了用户体验。

而Glide*为人性化的是,你甚至不需要编写任何额外的代码就能自动享受到这个*为便利的内存缓存功能,因为Glide默认就已经将它开启了。

那么既然已经默认开启了这个功能,还有什么可讲的用法呢?只有一点,如果你有什么特殊的原因需要禁用内存缓存功能,Glide对此提供了接口:

RequestOptions options = new RequestOptions()
        .skipMemoryCache(true);
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

可以看到,只需要调用skipMemoryCache()方法并传入true,就表示禁用掉Glide的内存缓存功能。

接下来我们开始学习硬盘缓存方面的内容。

其实在刚刚学习占位图功能的时候,我们就使用过硬盘缓存的功能了。当时为了禁止Glide对图片进行硬盘缓存而使用了如下代码:

RequestOptions options = new RequestOptions()
        .diskCacheStrategy(DiskCacheStrategy.NONE);
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

调用diskCacheStrategy()方法并传入DiskCacheStrategy.NONE,就可以禁用掉Glide的硬盘缓存功能了。

这个diskCacheStrategy()方法基本上就是Glide硬盘缓存功能的一切,它可以接收五种参数:

  • DiskCacheStrategy.NONE: 表示不缓存任何内容。
  • DiskCacheStrategy.DATA: 表示只缓存原始图片。
  • DiskCacheStrategy.RESOURCE: 表示只缓存转换过后的图片。
  • DiskCacheStrategy.ALL : 表示既缓存原始图片,也缓存转换过后的图片。
  • DiskCacheStrategy.AUTOMATIC: 表示让Glide根据图片资源智能地选择使用哪一种缓存策略(默认选项)。

其中,DiskCacheStrategy.DATA对应Glide 3中的DiskCacheStrategy.SOURCE,DiskCacheStrategy.RESOURCE对应Glide 3中的DiskCacheStrategy.RESULT。而DiskCacheStrategy.AUTOMATIC是Glide 4中新增的一种缓存策略,并且在不指定diskCacheStrategy的情况下默认使用就是的这种缓存策略。

上面五种参数的解释本身并没有什么难理解的地方,但是关于转换过后的图片这个概念大家可能需要了解一下。就是当我们使用Glide去加载一张图片的时候,Glide默认并不会将原始图片展示出来,而是会对图片进行压缩和转换(我们会在稍后学习这方面的内容)。总之就是经过种种一系列操作之后得到的图片,就叫转换过后的图片。

好的,关于Glide 4硬盘缓存的内容就讲到这里。想要了解更多Glide缓存方面的知识,可以参考 Android图片加载框架*全解析(三),深入探究Glide的缓存机制 这篇文章。

指定加载格式

我们都知道,Glide其中一个非常亮眼的功能就是可以加载GIF图片,而同样作为非常出色的图片加载框架的Picasso是不支持这个功能的。

而且使用Glide加载GIF图并不需要编写什么额外的代码,Glide内部会自动判断图片格式。比如我们将加载图片的URL地址改成一张GIF图,如下所示:

Glide.with(this)
     .load("http://guolin.tech/test.gif")
     .into(imageView);

 

现在重新运行一下代码,效果如下图所示:

%title插图%num也就是说,不管我们传入的是一张普通图片,还是一张GIF图片,Glide都会自动进行判断,并且可以正确地把它解析并展示出来。

但是如果我想指定加载格式该怎么办呢?就比如说,我希望加载的这张图必须是一张静态图片,我不需要Glide自动帮我判断它到底是静图还是GIF图。

想实现这个功能仍然非常简单,我们只需要再串接一个新的方法就可以了,如下所示:

Glide.with(this)
     .asBitmap()
     .load("http://guolin.tech/test.gif")
     .into(imageView);

 

可以看到,这里在with()方法的后面加入了一个asBitmap()方法,这个方法的意思就是说这里只允许加载静态图片,不需要Glide去帮我们自动进行图片格式的判断了。如果你传入的还是一张GIF图的话,Glide会展示这张GIF图的*帧,而不会去播放它。

熟悉Glide 3的朋友对asBitmap()方法肯定不会陌生对吧?但是千万不要觉得这里就没有陷阱了,在Glide 3中的语法是先load()再asBitmap()的,而在Glide 4中是先asBitmap()再load()的。乍一看可能分辨不出来有什么区别,但如果你写错了顺序就肯定会报错了。

那么类似地,既然我们能强制指定加载静态图片,就也能强制指定加载动态图片,对应的方法是asGif()。而Glide 4中又新增了asFile()方法和asDrawable()方法,分别用于强制指定文件格式的加载和Drawable格式的加载,用法都比较简单,就不再进行演示了。

回调与监听

回调与监听这部分的内容稍微有点多,我们分成四部分来学习一下。

1. into()方法

我们都知道Glide的into()方法中是可以传入ImageView的。那么into()方法还可以传入别的参数吗?我们可以让Glide加载出来的图片不显示到ImageView上吗?答案是肯定的,这就需要用到自定义Target功能。

Glide中的Target功能多样且复杂,下面我就先简单演示一种SimpleTarget的用法吧,代码如下所示:

SimpleTarget<Drawable> simpleTarget = new SimpleTarget<Drawable>() {
    @Override
    public void onResourceReady(Drawable resource, Transition<? super Drawable> transition) {
        imageView.setImageDrawable(resource);
    }
};

public void loadImage(View view) {
    Glide.with(this)
         .load("http://guolin.tech/book.png")
         .into(simpleTarget);
}

 

这里我们创建了一个SimpleTarget的实例,并且指定它的泛型是Drawable,然后重写了onResourceReady()方法。在onResourceReady()方法中,我们就可以获取到Glide加载出来的图片对象了,也就是方法参数中传过来的Drawable对象。有了这个对象之后你可以使用它进行任意的逻辑操作,这里我只是简单地把它显示到了ImageView上。

SimpleTarget的实现创建好了,那么只需要在加载图片的时候将它传入到into()方法中就可以了。

这里限于篇幅原因我只演示了自定义Target的简单用法,想学习更多相关的内容可以去阅读 Android图片加载框架*全解析(四),玩转Glide的回调与监听 。

2. preload()方法

Glide加载图片虽说非常智能,它会自动判断该图片是否已经有缓存了,如果有的话就直接从缓存中读取,没有的话再从网络去下载。但是如果我希望提前对图片进行一个预加载,等真正需要加载图片的时候就直接从缓存中读取,不想再等待慢长的网络加载时间了,这该怎么办呢?

不用担心,Glide专门给我们提供了预加载的接口,也就是preload()方法,我们只需要直接使用就可以了。

preload()方法有两个方法重载,一个不带参数,表示将会加载图片的原始尺寸,另一个可以通过参数指定加载图片的宽和高。

preload()方法的用法也非常简单,直接使用它来替换into()方法即可,如下所示:

Glide.with(this)
     .load("http://guolin.tech/book.png")
     .preload();

 

调用了预加载之后,我们以后想再去加载这张图片就会非常快了,因为Glide会直接从缓存当中去读取图片并显示出来,代码如下所示:

Glide.with(this)
     .load("http://guolin.tech/book.png")
     .into(imageView);

1

  • 2
  • 3

3. submit()方法

一直以来,我们使用Glide都是为了将图片显示到界面上。虽然我们知道Glide会在图片的加载过程中对图片进行缓存,但是缓存文件到底是存在哪里的,以及如何去直接访问这些缓存文件?我们都还不知道。

其实Glide将图片加载接口设计成这样也是希望我们使用起来更加的方便,不用过多去考虑底层的实现细节。但如果我现在就是想要去访问图片的缓存文件该怎么办呢?这就需要用到submit()方法了。

submit()方法其实就是对应的Glide 3中的downloadOnly()方法,和preload()方法类似,submit()方法也是可以替换into()方法的,不过submit()方法的用法明显要比preload()方法复杂不少。这个方法只会下载图片,而不会对图片进行加载。当图片下载完成之后,我们可以得到图片的存储路径,以便后续进行操作。

那么首先我们还是先来看下基本用法。submit()方法有两个方法重载:

  • submit()
  • submit(int width, int height)

其中submit()方法是用于下载原始尺寸的图片,而submit(int width, int height)则可以指定下载图片的尺寸。

这里就以submit()方法来举例。当调用了submit()方法后会立即返回一个FutureTarget对象,然后Glide会在后台开始下载图片文件。接下来我们调用FutureTarget的get()方法就可以去获取下载好的图片文件了,如果此时图片还没有下载完,那么get()方法就会阻塞住,一直等到图片下载完成才会有值返回。

下面我们通过一个例子来演示一下吧,代码如下所示:

public void downloadImage() {
    new Thread(new Runnable() {
        @Override
        public void run() {
            try {
                String url = "http://www.guolin.tech/book.png";
                final Context context = getApplicationContext();
                FutureTarget<File> target = Glide.with(context)
                        .asFile()
                        .load(url)
                        .submit();
                final File imageFile = target.get();
                runOnUiThread(new Runnable() {
                    @Override
                    public void run() {
                        Toast.makeText(context, imageFile.getPath(), Toast.LENGTH_LONG).show();
                    }
                });
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }).start();
}

这段代码稍微有一点点长,我带着大家解读一下。首先,submit()方法必须要用在子线程当中,因为刚才说了FutureTarget的get()方法是会阻塞线程的,因此这里的*步就是new了一个Thread。在子线程当中,我们先获取了一个Application Context,这个时候不能再用Activity作为Context了,因为会有Activity销毁了但子线程还没执行完这种可能出现。

接下来就是Glide的基本用法,只不过将into()方法替换成了submit()方法,并且还使用了一个asFile()方法来指定加载格式。submit()方法会返回一个FutureTarget对象,这个时候其实Glide已经开始在后台下载图片了,我们随时都可以调用FutureTarget的get()方法来获取下载的图片文件,只不过如果图片还没下载好线程会暂时阻塞住,等下载完成了才会把图片的File对象返回。

*后,我们使用runOnUiThread()切回到主线程,然后使用Toast将下载好的图片文件路径显示出来。

现在重新运行一下代码,效果如下图所示。

%title插图%num这样我们就能清晰地看出来图片完整的缓存路径是什么了。

4. listener()方法

其实listener()方法的作用非常普遍,它可以用来监听Glide加载图片的状态。举个例子,比如说我们刚才使用了preload()方法来对图片进行预加载,但是我怎样确定预加载有没有完成呢?还有如果Glide加载图片失败了,我该怎样调试错误的原因呢?答案都在listener()方法当中。

下面来看下listener()方法的基本用法吧,不同于刚才几个方法都是要替换into()方法的,listener()是结合into()方法一起使用的,当然也可以结合preload()方法一起使用。*基本的用法如下所示:

Glide.with(this)
     .load("http://www.guolin.tech/book.png")
     .listener(new RequestListener<Drawable>() {
         @Override
         public boolean onLoadFailed(@Nullable GlideException e, Object model, Target<Drawable> target, boolean isFirstResource) {
             return false;
         }

         @Override
         public boolean onResourceReady(Drawable resource, Object model, Target<Drawable> target, DataSource dataSource, boolean isFirstResource) {
             return false;
         }
     })
     .into(imageView);

 

这里我们在into()方法之前串接了一个listener()方法,然后实现了一个RequestListener的实例。其中RequestListener需要实现两个方法,一个onResourceReady()方法,一个onLoadFailed()方法。从方法名上就可以看出来了,当图片加载完成的时候就会回调onResourceReady()方法,而当图片加载失败的时候就会回调onLoadFailed()方法,onLoadFailed()方法中会将失败的GlideException参数传进来,这样我们就可以定位具体失败的原因了。

没错,listener()方法就是这么简单。不过还有一点需要处理,onResourceReady()方法和onLoadFailed()方法都有一个布尔值的返回值,返回false就表示这个事件没有被处理,还会继续向下传递,返回true就表示这个事件已经被处理掉了,从而不会再继续向下传递。举个简单点的例子,如果我们在RequestListener的onResourceReady()方法中返回了true,那么就不会再回调Target的onResourceReady()方法了。

关于回调与监听的内容就讲这么多吧,如果想要学习更多深入的内容以及源码解析,还是请参考这篇文章 Android图片加载框架*全解析(四),玩转Glide的回调与监听 。

图片变换

图片变换的意思就是说,Glide从加载了原始图片到*终展示给用户之前,又进行了一些变换处理,从而能够实现一些更加丰富的图片效果,如图片圆角化、圆形化、模糊化等等。

添加图片变换的用法非常简单,我们只需要在RequestOptions中串接transforms()方法,并将想要执行的图片变换操作作为参数传入transforms()方法即可,如下所示:

RequestOptions options = new RequestOptions()
        .transforms(...);
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

至于具体要进行什么样的图片变换操作,这个通常都是需要我们自己来写的。不过Glide已经内置了几种图片变换操作,我们可以直接拿来使用,比如CenterCrop、FitCenter、CircleCrop等。

但所有的内置图片变换操作其实都不需要使用transform()方法,Glide为了方便我们使用直接提供了现成的API:

RequestOptions options = new RequestOptions()
        .centerCrop();

RequestOptions options = new RequestOptions()
        .fitCenter();

RequestOptions options = new RequestOptions()
        .circleCrop();

 

当然,这些内置的图片变换API其实也只是对transform()方法进行了一层封装而已,它们背后的源码仍然还是借助transform()方法来实现的。

这里我们就选择其中一种内置的图片变换操作来演示一下吧,circleCrop()方法是用来对图片进行圆形化裁剪的,我们动手试一下,代码如下所示:

String url = "http://guolin.tech/book.png";
RequestOptions options = new RequestOptions()
        .circleCrop();
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

重新运行一下程序并点击加载图片按钮,效果如下图所示。

%title插图%num可以看到,现在展示的图片是对原图进行圆形化裁剪后得到的图片。

当然,除了使用内置的图片变换操作之外,我们完全可以自定义自己的图片变换操作。理论上,在对图片进行变换这个步骤中我们可以进行任何的操作,你想对图片怎么样都可以。包括圆角化、圆形化、黑白化、模糊化等等,甚至你将原图片完全替换成另外一张图都是可以的。

不过由于这部分内容相对于Glide 3没有任何的变化,因此就不再重复进行讲解了。想学习自定义图片变换操作的朋友们可以参考这篇文章 Android图片加载框架*全解析(五),Glide强大的图片变换功能 。

关于图片变换,*后我们再来看一个非常优秀的开源库,glide-transformations。它实现了很多通用的图片变换效果,如裁剪变换、颜色变换、模糊变换等等,使得我们可以非常轻松地进行各种各样的图片变换。

glide-transformations的项目主页地址是 https://github.com/wasabeef/glide-transformations 。

下面我们就来体验一下这个库的强大功能吧。首先需要将这个库引入到我们的项目当中,在app/build.gradle文件当中添加如下依赖:

dependencies {
    implementation 'jp.wasabeef:glide-transformations:3.0.1'
}

 

我们可以对图片进行单个变换处理,也可以将多种图片变换叠加在一起使用。比如我想同时对图片进行模糊化和黑白化处理,就可以这么写:

String url = "http://guolin.tech/book.png";
RequestOptions options = new RequestOptions()
        .transforms(new BlurTransformation(), new GrayscaleTransformation());
Glide.with(this)
     .load(url)
     .apply(options)
     .into(imageView);

 

可以看到,同时执行多种图片变换的时候,只需要将它们都传入到transforms()方法中即可。现在重新运行一下程序,效果如下图所示。

%title插图%num当然,这只是glide-transformations库的一小部分功能而已,更多的图片变换效果你可以到它的GitHub项目主页去学习。

自定义模块

自定义模块属于Glide中的高级功能,同时也是难度比较高的一部分内容。

这里我不可能在这一篇文章中将自定义模块的内容全讲一遍,限于篇幅的限制我只能讲一讲Glide 4中变化的这部分内容。关于Glide自定义模块的全部内容,请大家去参考 Android图片加载框架*全解析(六),探究Glide的自定义模块功能 这篇文章。

自定义模块功能可以将更改Glide配置,替换Glide组件等操作独立出来,使得我们能轻松地对Glide的各种配置进行自定义,并且又和Glide的图片加载逻辑没有任何交集,这也是一种低耦合编程方式的体现。下面我们就来学习一下自定义模块要如何实现。

首先定义一个我们自己的模块类,并让它继承自AppGlideModule,如下所示:

@GlideModule
public class MyAppGlideModule extends AppGlideModule {

    @Override
    public void applyOptions(Context context, GlideBuilder builder) {

    }

    @Override
    public void registerComponents(Context context, Glide glide, Registry registry) {

    }

}

 

可以看到,在MyAppGlideModule类当中,我们重写了applyOptions()和registerComponents()方法,这两个方法分别就是用来更改Glide配置以及替换Glide组件的。

注意在MyAppGlideModule类在上面,我们加入了一个@GlideModule的注解,这是Gilde 4和Glide 3*大的一个不同之处。在Glide 3中,我们定义了自定义模块之后,还必须在AndroidManifest.xml文件中去注册它才能生效,而在Glide 4中是不需要的,因为@GlideModule这个注解已经能够让Glide识别到这个自定义模块了。

这样的话,我们就将Glide自定义模块的功能完成了。后面只需要在applyOptions()和registerComponents()这两个方法中加入具体的逻辑,就能实现更改Glide配置或者替换Glide组件的功能了。详情还是请参考 Android图片加载框架*全解析(六),探究Glide的自定义模块功能 这篇文章,这里就不再展开讨论了。

使用Generated API

Generated API是Glide 4中全新引入的一个功能,它的工作原理是使用注解处理器 (Annotation Processor) 来生成出一个API,在Application模块中可使用该流式API一次性调用到RequestBuilder,RequestOptions和集成库中所有的选项。

这么解释有点拗口,简单点说,就是Glide 4仍然给我们提供了一套和Glide 3一模一样的流式API接口。毕竟有些人还是觉得Glide 3的API更好用一些,比如说我。

Generated API对于熟悉Glide 3的朋友来说那是再简单不过了,基本上就是和Glide 3一模一样的用法,只不过需要把Glide关键字替换成GlideApp关键字,如下所示:

GlideApp.with(this)
        .load(url)
        .placeholder(R.drawable.loading)
        .error(R.drawable.error)
        .skipMemoryCache(true)
        .diskCacheStrategy(DiskCacheStrategy.NONE)
        .override(Target.SIZE_ORIGINAL)
        .circleCrop()
        .into(imageView);

 

不过,有可能你的IDE中会提供找不到GlideApp这个类。这个类是通过编译时注解自动生成的,首先确保你的代码中有一个自定义的模块,并且给它加上了@GlideModule注解,也就是我们在上一节所讲的内容。然后在Android Studio中点击菜单栏Build -> Rebuild Project,GlideApp这个类就会自动生成了。

当然,Generated API所能做到的并不只是这些而已,它还可以对现有的API进行扩展,定制出任何属于你自己的API。

下面我来具体举个例子,比如说我们要求项目中所有图片的缓存策略全部都要缓存原始图片,那么每次在使用Glide加载图片的时候,都去指定diskCacheStrategy(DiskCacheStrategy.DATA)这么长长的一串代码,确实是让人比较心烦。这种情况我们就可以去定制一个自己的API了。

定制自己的API需要借助@GlideExtension和@GlideOption这两个注解。创建一个我们自定义的扩展类,代码如下所示:

@GlideExtension
public class MyGlideExtension {

    private MyGlideExtension() {

    }

    @GlideOption
    public static void cacheSource(RequestOptions options) {
        options.diskCacheStrategy(DiskCacheStrategy.DATA);
    }

}

 

这里我们定义了一个MyGlideExtension类,并且给加上了一个@GlideExtension注解,然后要将这个类的构造函数声明成private,这都是必须要求的写法。

接下来就可以开始自定义API了,这里我们定义了一个cacheSource()方法,表示只缓存原始图片,并给这个方法加上了@GlideOption注解。注意自定义API的方法都必须是静态方法,而且*个参数必须是RequestOptions,后面你可以加入任意多个你想自定义的参数。

在cacheSource()方法中,我们仍然还是调用的diskCacheStrategy(DiskCacheStrategy.DATA)方法,所以说cacheSource()就是一层简化API的封装而已。

然后在Android Studio中点击菜单栏Build -> Rebuild Project,神奇的事情就会发生了,你会发现你已经可以使用这样的语句来加载图片了:

GlideApp.with(this)
        .load(url)
        .cacheSource()
        .into(imageView);

 

有了这个强大的功能之后,我们使用Glide就能变得更加灵活了。

结束语

这样我们基本上就将Glide 4的所有重要内容都介绍完了,如果你以前非常熟悉Glide 3的话,看完这篇文章之后相信你已经能够熟练使用Glide 4了。而如果你以前并未接触过Glide,仅仅只看这一篇文章可能了解得还不够深入,建议*好还是把前面的七篇文章也去通读一下,这样你才能成为一名Glide好手。

未来我希望能继续给大家带来更好的技术文章,不过这个系列就到此为止了。也感谢有耐心的朋友能够看到*后,能坚持看完的人,你们都和我一样棒。

Android图片加载框架*全解析(七)实现带进度的Glide图片加载功能

我们的Glide系列文章终于要进入收尾篇了。从我开始写这个系列的*篇文章时,我就知道这会是一个很长的系列,只是没有想到竟然会写这么久。

在前面的六篇文章中,我们对Glide的方方面面都进行了学习,包括基本用法、源码解析、缓存机制、回调与监听、图片变换以及自定义模块。而今天,我们就要综合利用之前所学到的知识,来对Glide进行一个比较大的功能扩展,希望大家都已经好好阅读过了前面的六篇文章,并且有了不错的理解。

扩展目标

首先来确立一下功能扩展的目标。虽说Glide本身就已经十分强大了,但是有一个功能却长期以来都不支持,那就是监听下载进度功能。

我们都知道,使用Glide来加载一张网络上的图片是非常简单的,但是让人头疼的是,我们却无从得知当前图片的下载进度。如果这张图片很小的话,那么问题也不大,反正很快就会被加载出来。但如果这是一张比较大的GIF图,用户耐心等了很久结果图片还没显示出来,这个时候你就会觉得下载进度功能是十分有必要的了。

好的,那么我们今天的目标就是对Glide进行功能扩展,使其支持监听图片下载进度的功能。

开始

今天这篇文章我会带着大家从零去创建一个新的项目,一步步地进行实现,*终完成一个带进度的Glide图片加载的Demo。当然,在本篇文章的*后我会提供这个Demo的完整源码,但是这里我仍然希望大家能用心跟着我一步步来编写。

那么我们现在就开始吧,首先创建一个新项目,就叫做GlideProgressTest吧。

项目创建完成后的*件事就是要将必要的依赖库引入到当前的项目当中,目前我们必须要依赖的两个库就是Glide和OkHttp。在app/build.gradle文件当中添加如下配置:

dependencies { 
    compile 'com.github.bumptech.glide:glide:3.7.0' 
    compile 'com.squareup.okhttp3:okhttp:3.9.0' 
}

 

另外,由于Glide和OkHttp都需要用到网络功能,因此我们还得在AndroidManifest.xml中声明一下网络权限才行:

<uses-permission android:name="android.permission.INTERNET" />

 

好了,这样准备工作就完成了。

替换通讯组件

通过第二篇文章的源码分析,我们知道了Glide内部HTTP通讯组件的底层实现是基于HttpUrlConnection来进行定制的。但是HttpUrlConnection的可扩展性比较有限,我们在它的基础之上无法实现监听下载进度的功能,因此今天的*个大动作就是要将Glide中的HTTP通讯组件替换成OkHttp。

关于HTTP通讯组件的替换原理和替换方式,我在第六篇文章当中都介绍得比较清楚了,这里就不再赘述。下面我们就来开始快速地替换一下。

新建一个OkHttpFetcher类,并且实现DataFetcher接口,代码如下所示:

public class OkHttpFetcher implements DataFetcher<InputStream> { 

    private final OkHttpClient client; 
    private final GlideUrl url; 
    private InputStream stream; 
    private ResponseBody responseBody; 
    private volatile boolean isCancelled; 

    public OkHttpFetcher(OkHttpClient client, GlideUrl url) { 
        this.client = client; 
        this.url = url; 
    } 

    @Override 
    public InputStream loadData(Priority priority) throws Exception { 
        Request.Builder requestBuilder = new Request.Builder() 
                .url(url.toStringUrl()); 
        for (Map.Entry<String, String> headerEntry : url.getHeaders().entrySet()) {
            String key = headerEntry.getKey(); 
            requestBuilder.addHeader(key, headerEntry.getValue()); 
        } 
        Request request = requestBuilder.build(); 
        if (isCancelled) { 
            return null; 
        } 
        Response response = client.newCall(request).execute(); 
        responseBody = response.body(); 
        if (!response.isSuccessful() || responseBody == null) { 
            throw new IOException("Request failed with code: " + response.code());
        } 
        stream = ContentLengthInputStream.obtain(responseBody.byteStream(), 
                responseBody.contentLength()); 
        return stream; 
    } 

    @Override 
    public void cleanup() { 
        try { 
            if (stream != null) { 
                stream.close(); 
            } 
            if (responseBody != null) { 
                responseBody.close(); 
            } 
        } catch (IOException e) { 
            e.printStackTrace(); 
        } 
    } 

    @Override 
    public String getId() { 
        return url.getCacheKey(); 
    } 

    @Override 
    public void cancel() { 
        isCancelled = true; 
    } 
}

 

然后新建一个OkHttpGlideUrlLoader类,并且实现ModelLoader

public class OkHttpGlideUrlLoader implements ModelLoader<GlideUrl, InputStream> { 

    private OkHttpClient okHttpClient; 

    public static class Factory implements ModelLoaderFactory<GlideUrl, InputStream> { 

        private OkHttpClient client; 

        public Factory() { 
        } 

        public Factory(OkHttpClient client) { 
            this.client = client; 
        } 

        private synchronized OkHttpClient getOkHttpClient() { 
            if (client == null) { 
                client = new OkHttpClient(); 
            } 
            return client; 
        } 

        @Override 
        public ModelLoader<GlideUrl, InputStream> build(Context context, GenericLoaderFactory factories) {
            return new OkHttpGlideUrlLoader(getOkHttpClient()); 
        } 

        @Override 
        public void teardown() { 
        } 
    } 

    public OkHttpGlideUrlLoader(OkHttpClient client) { 
        this.okHttpClient = client; 
    } 

    @Override 
    public DataFetcher<InputStream> getResourceFetcher(GlideUrl model, int width, int height) { 
        return new OkHttpFetcher(okHttpClient, model); 
    } 
}

 

接下来,新建一个MyGlideModule类并实现GlideModule接口,然后在registerComponents()方法中将我们刚刚创建的OkHttpGlideUrlLoader和OkHttpFetcher注册到Glide当中,将原来的HTTP通讯组件给替换掉,如下所示:

public class MyGlideModule implements GlideModule { 
    @Override 
    public void applyOptions(Context context, GlideBuilder builder) { 
    } 

    @Override 
    public void registerComponents(Context context, Glide glide) { 
        glide.register(GlideUrl.class, InputStream.class, new OkHttpGlideUrlLoader.Factory());
    } 
}

 

*后,为了让Glide能够识别我们自定义的MyGlideModule,还得在AndroidManifest.xml文件当中加入如下配置才行:

<manifest> 
    ... 
    <application> 
        <meta-data 
            android:name="com.example.glideprogresstest.MyGlideModule" 
            android:value="GlideModule" /> 
        ... 
    </application> 
</manifest>

 

OK,这样我们就把Glide中的HTTP通讯组件成功替换成OkHttp了。

实现下载进度监听

那么,将HTTP通讯组件替换成OkHttp之后,我们又该如何去实现监听下载进度的功能呢?这就要依靠OkHttp强大的拦截器机制了。

我们只要向OkHttp中添加一个自定义的拦截器,就可以在拦截器中捕获到整个HTTP的通讯过程,然后加入一些自己的逻辑来计算下载进度,这样就可以实现下载进度监听的功能了。

拦截器属于OkHttp的高级功能,不过即使你之前并没有接触过拦截器,我相信你也能轻松看懂本篇文章的,因为它本身并不难。

确定了实现思路之后,那我们就开始动手吧。首先创建一个没有任何逻辑的空拦截器,新建ProgressInterceptor类并实现Interceptor接口,代码如下所示:

public class ProgressInterceptor implements Interceptor { 

    @Override 
    public Response intercept(Chain chain) throws IOException {
        Request request = chain.request(); 
        Response response = chain.proceed(request); 
        return response; 
    } 

}

 

这个拦截器中我们可以说是什么都没有做。就是拦截到了OkHttp的请求,然后调用proceed()方法去处理这个请求,*终将服务器响应的Response返回。

接下来我们需要启用这个拦截器,修改MyGlideModule中的代码,如下所示:

public class MyGlideModule implements GlideModule { 
    @Override 
    public void applyOptions(Context context, GlideBuilder builder) { 
    } 

    @Override 
    public void registerComponents(Context context, Glide glide) { 
        OkHttpClient.Builder builder = new OkHttpClient.Builder(); 
        builder.addInterceptor(new ProgressInterceptor()); 
        OkHttpClient okHttpClient = builder.build(); 
        glide.register(GlideUrl.class, InputStream.class, new OkHttpGlideUrlLoader.Factory(okHttpClient));
    } 
}

 

这里我们创建了一个OkHttpClient.Builder,然后调用addInterceptor()方法将刚才创建的ProgressInterceptor添加进去,*后将构建出来的新OkHttpClient对象传入到OkHttpGlideUrlLoader.Factory中即可。

好的,现在自定义的拦截器已经启用了,接下来就可以开始去实现下载进度监听的具体逻辑了。首先新建一个ProgressListener接口,用于作为进度监听回调的工具,如下所示:

public interface ProgressListener {

    void onProgress(int progress);

}

 

然后我们在ProgressInterceptor中加入注册下载监听和取消注册下载监听的方法。修改ProgressInterceptor中的代码,如下所示:

public class ProgressInterceptor implements Interceptor { 

    static final Map<String, ProgressListener> LISTENER_MAP = new HashMap<>();

    public static void addListener(String url, ProgressListener listener) {
        LISTENER_MAP.put(url, listener); 
    } 

    public static void removeListener(String url) { 
        LISTENER_MAP.remove(url); 
    } 

    @Override 
    public Response intercept(Chain chain) throws IOException { 
        Request request = chain.request(); 
        Response response = chain.proceed(request); 
        return response; 
    } 

}

 

可以看到,这里使用了一个Map来保存注册的监听器,Map的键是一个URL地址。之所以要这么做,是因为你可能会使用Glide同时加载很多张图片,而这种情况下,必须要能区分出来每个下载进度的回调到底是对应哪个图片URL地址的。

接下来就要到今天*复杂的部分了,也就是下载进度的具体计算。我们需要新建一个ProgressResponseBody类,并让它继承自OkHttp的ResponseBody,然后在这个类当中去编写具体的监听下载进度的逻辑,代码如下所示:

public class ProgressResponseBody extends ResponseBody {

    private static final String TAG = "ProgressResponseBody";

    private BufferedSource bufferedSource;

    private ResponseBody responseBody;

    private ProgressListener listener;

    public ProgressResponseBody(String url, ResponseBody responseBody) {
        this.responseBody = responseBody;
        listener = ProgressInterceptor.LISTENER_MAP.get(url);
    }

    @Override
    public MediaType contentType() {
        return responseBody.contentType();
    }

    @Override
    public long contentLength() {
        return responseBody.contentLength();
    }

    @Override 
    public BufferedSource source() {
        if (bufferedSource == null) {
            bufferedSource = Okio.buffer(new ProgressSource(responseBody.source()));
        }
        return bufferedSource;
    }

    private class ProgressSource extends ForwardingSource {

        long totalBytesRead = 0;

        int currentProgress;

        ProgressSource(Source source) {
            super(source);
        }

        @Override 
        public long read(Buffer sink, long byteCount) throws IOException {
            long bytesRead = super.read(sink, byteCount);
            long fullLength = responseBody.contentLength();
            if (bytesRead == -1) {
                totalBytesRead = fullLength;
            } else {
                totalBytesRead += bytesRead;
            }
            int progress = (int) (100f * totalBytesRead / fullLength);
            Log.d(TAG, "download progress is " + progress);
            if (listener != null && progress != currentProgress) {
                listener.onProgress(progress);
            }
            if (listener != null && totalBytesRead == fullLength) {
                listener = null;
            }
            currentProgress = progress;
            return bytesRead;
        }
    }

}

 

其实这段代码也不是很难,下面我来简单解释一下。首先,我们定义了一个ProgressResponseBody的构造方法,该构造方法中要求传入一个url参数和一个ResponseBody参数。那么很显然,url参数就是图片的url地址了,而ResponseBody参数则是OkHttp拦截到的原始的ResponseBody对象。然后在构造方法中,我们调用了ProgressInterceptor中的LISTENER_MAP来去获取该url对应的监听器回调对象,有了这个对象,待会就可以回调计算出来的下载进度了。

由于继承了ResponseBody类之后一定要重写contentType()、contentLength()和source()这三个方法,我们在contentType()和contentLength()方法中直接就调用传入的原始ResponseBody的contentType()和contentLength()方法即可,这相当于一种委托模式。但是在source()方法中,我们就必须加入点自己的逻辑了,因为这里要涉及到具体的下载进度计算。

那么我们具体看一下source()方法,这里先是调用了原始ResponseBody的source()方法来去获取Source对象,接下来将这个Source对象封装到了一个ProgressSource对象当中,*终再用Okio的buffer()方法封装成BufferedSource对象返回。

那么这个ProgressSource是什么呢?它是一个我们自定义的继承自ForwardingSource的实现类。ForwardingSource也是一个使用委托模式的工具,它不处理任何具体的逻辑,只是负责将传入的原始Source对象进行中转。但是,我们使用ProgressSource继承自ForwardingSource,那么就可以在中转的过程中加入自己的逻辑了。

可以看到,在ProgressSource中我们重写了read()方法,然后在read()方法中获取该次读取到的字节数以及下载文件的总字节数,并进行一些简单的数学计算就能算出当前的下载进度了。这里我先使用Log工具将算出的结果打印了一下,再通过前面获取到的回调监听器对象将结果进行回调。

好的,现在计算下载进度的逻辑已经完成了,那么我们快点在拦截器当中使用它吧。修改ProgressInterceptor中的代码,如下所示:

public class ProgressInterceptor implements Interceptor { 

    ... 

    @Override 
    public Response intercept(Chain chain) throws IOException { 
        Request request = chain.request(); 
        Response response = chain.proceed(request); 
        String url = request.url().toString(); 
        ResponseBody body = response.body(); 
        Response newResponse = response.newBuilder().body(new ProgressResponseBody(url, body)).build();
        return newResponse; 
    } 

}

 

这里也都是一些OkHttp的简单用法。我们通过Response的newBuilder()方法来创建一个新的Response对象,并把它的body替换成刚才实现的ProgressResponseBody,*终将新的Response对象进行返回,这样计算下载进度的逻辑就能生效了。

代码写到这里,我们就可以来运行一下程序了。现在无论是加载任何网络上的图片,都应该是可以监听到它的下载进度的。

修改activity_main.xml中的代码,如下所示:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    android:orientation="vertical"> 

    <Button 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:text="Load Image" 
        android:onClick="loadImage" 
        /> 

    <ImageView 
        android:id="@+id/image" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" /> 
</LinearLayout>

 

很简单,这里使用了一个Button按钮来加载图片,使用了一个ImageView来展示图片。

然后修改MainActivity中的代码,如下所示:

public class MainActivity extends AppCompatActivity { 

    String url = "http://guolin.tech/book.png"; 

    ImageView image; 

    @Override 
    protected void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_main); 
        image = (ImageView) findViewById(R.id.image); 
    } 

    public void loadImage(View view) { 
        Glide.with(this) 
             .load(url) 
             .diskCacheStrategy(DiskCacheStrategy.NONE)
             .override(Target.SIZE_ORIGINAL, Target.SIZE_ORIGINAL)
             .into(image); 
    } 
}

 

现在就可以运行一下程序了,效果如下图所示。

%title插图%numOK,图片已经加载出来了。那么怎么验证有没有成功监听到图片的下载进度呢?还记得我们刚才在ProgressResponseBody中加的打印日志吗?现在只要去logcat中观察一下就知道了,如下图所示:

%title插图%num由此可见,下载进度监听功能已经成功实现了。

进度显示

虽然现在我们已经能够监听到图片的下载进度了,但是这个进度目前还只能显示在控制台打印当中,这对于用户来说是没有任何意义的,因此我们下一步就是要想办法将下载进度显示到界面上。

现在修改MainActivity中的代码,如下所示:

public class MainActivity extends AppCompatActivity {

    String url = "http://guolin.tech/book.png";

    ImageView image;

    ProgressDialog progressDialog;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        image = (ImageView) findViewById(R.id.image);
        progressDialog = new ProgressDialog(this);
        progressDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
        progressDialog.setMessage("加载中"); 
    }

    public void loadImage(View view) {
        ProgressInterceptor.addListener(url, new ProgressListener() {
            @Override
            public void onProgress(int progress) {
                progressDialog.setProgress(progress);
            }
        });
        Glide.with(this)
             .load(url)
             .diskCacheStrategy(DiskCacheStrategy.NONE)
             .override(Target.SIZE_ORIGINAL, Target.SIZE_ORIGINAL)
             .into(new GlideDrawableImageViewTarget(image) {
                 @Override
                 public void onLoadStarted(Drawable placeholder) {
                     super.onLoadStarted(placeholder);
                     progressDialog.show();
                 }

                 @Override 
                 public void onResourceReady(GlideDrawable resource, GlideAnimation<? super GlideDrawable> animation) {
                     super.onResourceReady(resource, animation);
                     progressDialog.dismiss();
                     ProgressInterceptor.removeListener(url);
                 }
             });
    }

 

代码并不复杂。这里我们新增了一个ProgressDialog用来显示下载进度,然后在loadImage()方法中,调用了ProgressInterceptor.addListener()方法来去注册一个下载监听器,并在onProgress()回调方法中更新当前的下载进度。

*后,Glide的into()方法也做了修改,这次是into到了一个GlideDrawableImageViewTarget当中。我们重写了它的onLoadStarted()方法和onResourceReady()方法,从而实现当图片开始加载的时候显示进度对话框,当图片加载完成时关闭进度对话框的功能。

现在重新运行一下程序,效果如下图所示。

%title插图%num当然,不仅仅是静态图片,体积比较大的GIF图也是可以成功监听到下载进度的。比如我们把图片的url地址换成http://guolin.tech/test.gif,重新运行程序,效果如下图所示。

%title插图%num好了,这样我们就把带进度的Glide图片加载功能完整地实现了一遍。虽然这个例子当中的界面都比较粗糙,下载进度框也是使用的*简陋的,不过只要将功能学会了,界面那都不是事,大家后期可以自己进行各种界面优化。

写了大半年的一个系列就这么要结束了,突然还有一点点小不舍。如果大家能将整个系列的七篇文章都很好地掌握了,那么现在自称为Glide高手应该不算过分。

其实在刚打算写这个系列的时候,我是准备写八篇文章,结果*后满打满算就只写出了七篇。那么为了兑现自己当初八篇的承诺,我准备*后一篇写一下关于Glide 4.0版本的用法,顺便让我自己也找个契机去研究一下新版本。当然,这并不是说Glide 3.7版本就已经淘汰了,事实上,Glide 3.7版本十分稳定,而且还能几乎完全满足我平时开发的所有需求,是可以长期使用下去的一个版本。

Android图片加载框架*全解析(六)探究Glide的自定义模块功能

不知不觉中,我们的Glide系列教程已经到了第六篇了,距离*篇Glide的基本用法发布已经过去了半年的时间。在这半年中,我们通过用法讲解和源码分析配合学习的方式,将Glide的方方面面都研究了个遍,相信一直能看到这里的朋友现在已经是一位Glide高手了。

整个Glide系列预计总共会有八篇文章,现在也是逐步进入尾声了。不过,越是到后面,我们探究的内容也越是更加深入。那么今天,我们就来一起探究一下Glide中一个比较深入,但同时也是非常重要的一个功能——自定义模块。

自定义模块的基本用法

学到这里相信你已经知道,Glide的用法是非常非常简单的,大多数情况下,我们想要实现的图片加载效果只需要一行代码就能解决了。但是Glide过于简洁的API也造成了一个问题,就是如果我们想要更改Glide的某些默认配置项应该怎么操作呢?很难想象如何将更改Glide配置项的操作串联到一行经典的Glide图片加载语句中当中吧?没错,这个时候就需要用到自定义模块功能了。

自定义模块功能可以将更改Glide配置,替换Glide组件等操作独立出来,使得我们能轻松地对Glide的各种配置进行自定义,并且又和Glide的图片加载逻辑没有任何交集,这也是一种低耦合编程方式的体现。那么接下来我们就学习一下自定义模块的基本用法。

首先需要定义一个我们自己的模块类,并让它实现GlideModule接口,如下所示:

public class MyGlideModule implements GlideModule {
    @Override
    public void applyOptions(Context context, GlideBuilder builder) {
    }

    @Override
    public void registerComponents(Context context, Glide glide) {
    }
}

 

可以看到,在MyGlideModule类当中,我们重写了applyOptions()和registerComponents()方法,这两个方法分别就是用来更改Glide和配置以及替换Glide组件的。我们待会儿只需要在这两个方法中加入具体的逻辑,就能实现更改Glide配置或者替换Glide组件的功能了。

不过,目前Glide还无法识别我们自定义的MyGlideModule,如果想要让它生效,还得在AndroidManifest.xml文件当中加入如下配置才行:

<manifest>

    ...

    <application>

        <meta-data
            android:name="com.example.glidetest.MyGlideModule"
            android:value="GlideModule" />

        ...

    </application>
</manifest>  

 

在<application>标签中加入一个meta-data配置项,其中android:name指定成我们自定义的MyGlideModule的完整路径,android:value必须指定成GlideModule,这个是固定值。

这样的话,我们就将Glide自定义模块的功能完成了,是不是非常简单?现在Glide已经能够识别我们自定义的这个MyGlideModule了,但是在编写具体的功能之前,我们还是按照老规矩阅读一下源码,从源码的层面上来分析一下,Glide到底是如何识别出这个自定义的MyGlideModule的。

自定义模块的原理

这里我不会带着大家从Glide代码执行的*步一行行重头去解析Glide的源码,而是只分析和自定义模块相关的部分。如果你想将Glide的源码通读一遍的话,可以去看本系列的第二篇文章 Android图片加载框架*全解析(二),从源码的角度理解Glide的执行流程 。

显然我们已经用惯了Glide.with(context).load(url).into(imageView)这样一行简洁的Glide图片加载语句,但是我们好像从来没有注意过Glide这个类本身的实例。然而事实上,Glide类确实是有创建实例的,只不过是在内部由Glide自动帮我们创建和管理了,对于开发者而言,大多数情况下是不用关心它的,只需要调用它的静态方法就可以了。

那么Glide的实例到底是在哪里创建的呢?我们来看下Glide类中的get()方法的源码,如下所示:

public class Glide {

    private static volatile Glide glide;

    ...

    public static Glide get(Context context) {
        if (glide == null) {
            synchronized (Glide.class) {
                if (glide == null) {
                    Context applicationContext = context.getApplicationContext();
                    List<GlideModule> modules = new ManifestParser(applicationContext).parse();
                    GlideBuilder builder = new GlideBuilder(applicationContext);
                    for (GlideModule module : modules) {
                        module.applyOptions(applicationContext, builder);
                    }
                    glide = builder.createGlide();
                    for (GlideModule module : modules) {
                        module.registerComponents(applicationContext, glide);
                    }
                }
            }
        }
        return glide;
    }

    ...
}

 

我们来仔细看一下上面这段代码。首先这里使用了一个单例模式来获取Glide对象的实例,可以看到,这是一个非常典型的双重锁模式。然后在第12行,调用ManifestParser的parse()方法去解析AndroidManifest.xml文件中的配置,实际上就是将AndroidManifest中所有值为GlideModule的meta-data配置读取出来,并将相应的自定义模块实例化。由于你可以自定义任意多个模块,因此这里我们将会得到一个GlideModule的List集合。

接下来在第13行创建了一个GlideBuilder对象,并通过一个循环调用了每一个GlideModule的applyOptions()方法,同时也把GlideBuilder对象作为参数传入到这个方法中。而applyOptions()方法就是我们可以加入自己的逻辑的地方了,虽然目前为止我们还没有编写任何逻辑。

再往下的一步就非常关键了,这里调用了GlideBuilder的createGlide()方法,并返回了一个Glide对象。也就是说,Glide对象的实例就是在这里创建的了,那么我们跟到这个方法当中瞧一瞧:

public class GlideBuilder {
    private final Context context;

    private Engine engine;
    private BitmapPool bitmapPool;
    private MemoryCache memoryCache;
    private ExecutorService sourceService;
    private ExecutorService diskCacheService;
    private DecodeFormat decodeFormat;
    private DiskCache.Factory diskCacheFactory;

    ...

    Glide createGlide() {
        if (sourceService == null) {
            final int cores = Math.max(1, Runtime.getRuntime().availableProcessors());
            sourceService = new FifoPriorityThreadPoolExecutor(cores);
        }
        if (diskCacheService == null) {
            diskCacheService = new FifoPriorityThreadPoolExecutor(1);
        }
        MemorySizeCalculator calculator = new MemorySizeCalculator(context);
        if (bitmapPool == null) {
            if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
                int size = calculator.getBitmapPoolSize();
                bitmapPool = new LruBitmapPool(size);
            } else {
                bitmapPool = new BitmapPoolAdapter();
            }
        }
        if (memoryCache == null) {
            memoryCache = new LruResourceCache(calculator.getMemoryCacheSize());
        }
        if (diskCacheFactory == null) {
            diskCacheFactory = new InternalCacheDiskCacheFactory(context);
        }
        if (engine == null) {
            engine = new Engine(memoryCache, diskCacheFactory, diskCacheService, sourceService);
        }
        if (decodeFormat == null) {
            decodeFormat = DecodeFormat.DEFAULT;
        }
        return new Glide(engine, memoryCache, bitmapPool, context, decodeFormat);
    }
}

 

这个方法中会创建BitmapPool、MemoryCache、DiskCache、DecodeFormat等对象的实例,并在*后一行创建一个Glide对象的实例,然后将前面创建的这些实例传入到Glide对象当中,以供后续的图片加载操作使用。

但是大家有没有注意到一个细节,createGlide()方法中创建任何对象的时候都做了一个空检查,只有在对象为空的时候才会去创建它的实例。也就是说,如果我们可以在applyOptions()方法中提前就给这些对象初始化并赋值,那么在createGlide()方法中就不会再去重新创建它们的实例了,从而也就实现了更改Glide配置的功能。关于这个功能我们待会儿会进行具体的演示。

现在继续回到Glide的get()方法中,得到了Glide对象的实例之后,接下来又通过一个循环调用了每一个GlideModule的registerComponents()方法,在这里我们可以加入替换Glide的组件的逻辑。

好了,这就是Glide自定义模块的全部工作原理。了解了它的工作原理之后,接下来所有的问题就集中在我们到底如何在applyOptions()和registerComponents()这两个方法中加入具体的逻辑了,下面我们马上就来学习一下。

更改Glide配置

刚才在分析自定义模式工作原理的时候其实就已经提到了,如果想要更改Glide的默认配置,其实只需要在applyOptions()方法中提前将Glide的配置项进行初始化就可以了。那么Glide一共有哪些配置项呢?这里我给大家做了一个列举:

  • setMemoryCache()
    用于配置Glide的内存缓存策略,默认配置是LruResourceCache。
  • setBitmapPool()
    用于配置Glide的Bitmap缓存池,默认配置是LruBitmapPool。
  • setDiskCache()
    用于配置Glide的硬盘缓存策略,默认配置是InternalCacheDiskCacheFactory。
  • setDiskCacheService()
    用于配置Glide读取缓存中图片的异步执行器,默认配置是FifoPriorityThreadPoolExecutor,也就是先入先出原则。
  • setResizeService()
    用于配置Glide读取非缓存中图片的异步执行器,默认配置也是FifoPriorityThreadPoolExecutor。
  • setDecodeFormat()
    用于配置Glide加载图片的解码模式,默认配置是RGB_565。

其实Glide的这些默认配置都非常科学且合理,使用的缓存算法也都是效率*高的,因此在*大多数情况下我们并不需要去修改这些默认配置,这也是Glide用法能如此简洁的一个原因。

但是Glide科学的默认配置并不影响我们去学习自定义Glide模块的功能,因此总有某些情况下,默认的配置可能将无法满足你,这个时候就需要我们自己动手来修改默认配置了。

下面就通过具体的实例来看一下吧。刚才说到,Glide默认的硬盘缓存策略使用的是InternalCacheDiskCacheFactory,这种缓存会将所有Glide加载的图片都存储到当前应用的私有目录下。这是一种非常安全的做法,但同时这种做法也造成了一些不便,因为私有目录下即使是开发者自己也是无法查看的,如果我想要去验证一下图片到底有没有成功缓存下来,这就有点不太好办了。

这种情况下,就非常适合使用自定义模块来更改Glide的默认配置。我们完全可以自己去实现DiskCache.Factory接口来自定义一个硬盘缓存策略,不过却大大没有必要这么做,因为Glide本身就内置了一个ExternalCacheDiskCacheFactory,可以允许将加载的图片都缓存到SD卡。

那么接下来,我们就尝试使用这个ExternalCacheDiskCacheFactory来替换默认的InternalCacheDiskCacheFactory,从而将所有Glide加载的图片都缓存到SD卡上。

由于在前面我们已经创建好了一个自定义模块MyGlideModule,那么现在就可以直接在这里编写逻辑了,代码如下所示:

public class MyGlideModule implements GlideModule {

    @Override
    public void applyOptions(Context context, GlideBuilder builder) {
        builder.setDiskCache(new ExternalCacheDiskCacheFactory(context));
    }

    @Override
    public void registerComponents(Context context, Glide glide) {

    }

}

没错,就是这么简单,现在所有Glide加载的图片都会缓存到SD卡上了。

另外,InternalCacheDiskCacheFactory和ExternalCacheDiskCacheFactory的默认硬盘缓存大小都是250M。也就是说,如果你的应用缓存的图片总大小超出了250M,那么Glide就会按照DiskLruCache算法的原则来清理缓存的图片。

当然,我们是可以对这个默认的缓存大小进行修改的,而且修改方式非常简单,如下所示:

public class MyGlideModule implements GlideModule {

    public static final int DISK_CACHE_SIZE = 500 * 1024 * 1024;

    @Override
    public void applyOptions(Context context, GlideBuilder builder) {
        builder.setDiskCache(new ExternalCacheDiskCacheFactory(context, DISK_CACHE_SIZE));
    }

    @Override
    public void registerComponents(Context context, Glide glide) {

    }

}

 

只需要向ExternalCacheDiskCacheFactory或者InternalCacheDiskCacheFactory再传入一个参数就可以了,现在我们就将Glide硬盘缓存的大小调整成了500M。

好了,更改Glide配置的功能就是这么简单,那么接下来我们就来验证一下更改的配置到底有没有生效吧。

这里还是使用*基本的Glide加载语句来去加载一张网络图片:

String url = "http://guolin.tech/book.png";
Glide.with(this)
     .load(url)
     .into(imageView);

 

运行一下程序,效果如下图所示:

%title插图%numOK,现在图片已经加载出现了,那么我们去找一找它的缓存吧。

ExternalCacheDiskCacheFactory的默认缓存路径是在sdcard/Android/包名/cache/image_manager_disk_cache目录当中,我们使用文件浏览器进入到这个目录,结果如下图所示。

%title插图%num可以看到,这里有两个文件,其中journal文件是DiskLruCache算法的日志文件,这个文件必不可少,且只会有一个。想了解更多关于DiskLruCache算法的朋友,可以去阅读我的这篇博客 Android DiskLruCache完全解析,硬盘缓存的*佳方案 。

而另外一个文件就是那张缓存的图片了,它的文件名虽然看上去很奇怪,但是我们只需要把这个文件的后缀改成.png,然后用图片浏览器打开,结果就一目了然了,如下图所示。

%title插图%num由此证明,我们已经成功将Glide的硬盘缓存路径修改到SD卡上了。

另外这里再提一点,我们都知道Glide和Picasso的用法是非常相似的,但是有一点差别却很大。Glide加载图片的默认格式是RGB_565,而Picasso加载图片的默认格式是ARGB_8888。ARGB_8888格式的图片效果会更加细腻,但是内存开销会比较大。而RGB_565格式的图片则更加节省内存,但是图片效果上会差一些。

Glide和Picasso各自采取的默认图片格式谈不上熟优熟劣,只能说各自的取舍不一样。但是如果你希望Glide也能使用ARGB_8888的图片格式,这当然也是可以的。我们只需要在MyGlideModule中更改一下默认配置即可,如下所示:

public class MyGlideModule implements GlideModule {

    public static final int DISK_CACHE_SIZE = 500 * 1024 * 1024;

    @Override
    public void applyOptions(Context context, GlideBuilder builder) {
        builder.setDiskCache(new ExternalCacheDiskCacheFactory(context, DISK_CACHE_SIZE));
        builder.setDecodeFormat(DecodeFormat.PREFER_ARGB_8888);
    }

    @Override
    public void registerComponents(Context context, Glide glide) {

    }

}

 

通过这样配置之后,使用Glide加载的所有图片都将会使用ARGB_8888的格式,虽然图片质量变好了,但同时内存开销也会明显增大,所以你要做好心理准备哦。

好了,关于更改Glide配置的内容就介绍这么多,接下来就让我们进入到下一个非常重要的主题,替换Glide组件。

替换Glide组件

替换Glide组件功能需要在自定义模块的registerComponents()方法中加入具体的替换逻辑。相比于更改Glide配置,替换Glide组件这个功能的难度就明显大了不少。Glide中的组件非常繁多,也非常复杂,但其实大多数情况下并不需要我们去做什么替换。不过,有一个组件却有着比较大的替换需求,那就是Glide的HTTP通讯组件。

默认情况下,Glide使用的是基于原生HttpURLConnection进行订制的HTTP通讯组件,但是现在大多数的Android开发者都更喜欢使用OkHttp,因此将Glide中的HTTP通讯组件修改成OkHttp的这个需求比较常见,那么今天我们也会以这个功能来作为例子进行讲解。

首先来看一下Glide中目前有哪些组件吧,在Glide类的构造方法当中,如下所示:

public class Glide {

    Glide(Engine engine, MemoryCache memoryCache, BitmapPool bitmapPool, Context context, DecodeFormat decodeFormat) {
        ...

        register(File.class, ParcelFileDescriptor.class, new FileDescriptorFileLoader.Factory());
        register(File.class, InputStream.class, new StreamFileLoader.Factory());
        register(int.class, ParcelFileDescriptor.class, new FileDescriptorResourceLoader.Factory());
        register(int.class, InputStream.class, new StreamResourceLoader.Factory());
        register(Integer.class, ParcelFileDescriptor.class, new FileDescriptorResourceLoader.Factory());
        register(Integer.class, InputStream.class, new StreamResourceLoader.Factory());
        register(String.class, ParcelFileDescriptor.class, new FileDescriptorStringLoader.Factory());
        register(String.class, InputStream.class, new StreamStringLoader.Factory());
        register(Uri.class, ParcelFileDescriptor.class, new FileDescriptorUriLoader.Factory());
        register(Uri.class, InputStream.class, new StreamUriLoader.Factory());
        register(URL.class, InputStream.class, new StreamUrlLoader.Factory());
        register(GlideUrl.class, InputStream.class, new HttpUrlGlideUrlLoader.Factory());
        register(byte[].class, InputStream.class, new StreamByteArrayLoader.Factory());

        ...
    }

}

 

可以看到,这里都是以调用register()方法的方式来注册一个组件,register()方法中传入的参数表示Glide支持使用哪种参数类型来加载图片,以及如何去处理这种类型的图片加载。举个例子:

register(GlideUrl.class, InputStream.class, new HttpUrlGlideUrlLoader.Factory());

 

这句代码就表示,我们可以使用Glide.with(context).load(new GlideUrl("url...")).into(imageView)的方式来加载图片,而HttpUrlGlideUrlLoader.Factory则是要负责处理具体的网络通讯逻辑。如果我们想要将Glide的HTTP通讯组件替换成OkHttp的话,那么只需要在自定义模块当中重新注册一个GlideUrl类型的组件就行了。

说到这里有的朋友可能会疑问了,我们平时使用Glide加载图片时,大多数情况下都是直接将图片的URL字符串传入到load()方法当中的,很少会将它封装成GlideUrl对象之后再传入到load()方法当中,那为什么只需要重新注册一个GlideUrl类型的组件,而不需要去重新注册一个String类型的组件呢?其实道理很简单,因为load(String)方法只是Glide给我们提供一种简易的API封装而已,它的底层仍然还是调用的GlideUrl组件,因此我们在替换组件的时候只需要直接替换*底层的,这样就一步到位了。

那么接下来我们就开始学习到底如何将Glide的HTTP通讯组件替换成OkHttp。

首先*步,不用多说,肯定是要先将OkHttp的库引入到当前项目中,如下所示:

dependencies {
    compile 'com.squareup.okhttp3:okhttp:3.9.0'
}

 

然后接下来该怎么做呢?我们只要依葫芦画瓢就可以了。刚才不是说Glide的网络通讯逻辑是由HttpUrlGlideUrlLoader.Factory来负责的吗,那么我们就来看一下它的源码:

public class HttpUrlGlideUrlLoader implements ModelLoader<GlideUrl, InputStream> {

    private final ModelCache<GlideUrl, GlideUrl> modelCache;

    public static class Factory implements ModelLoaderFactory<GlideUrl, InputStream> {
        private final ModelCache<GlideUrl, GlideUrl> modelCache = new ModelCache<GlideUrl, GlideUrl>(500);

        @Override
        public ModelLoader<GlideUrl, InputStream> build(Context context, GenericLoaderFactory factories) {
            return new HttpUrlGlideUrlLoader(modelCache);
        }

        @Override
        public void teardown() {
        }
    }

    public HttpUrlGlideUrlLoader() {
        this(null);
    }

    public HttpUrlGlideUrlLoader(ModelCache<GlideUrl, GlideUrl> modelCache) {
        this.modelCache = modelCache;
    }

    @Override
    public DataFetcher<InputStream> getResourceFetcher(GlideUrl model, int width, int height) {
        GlideUrl url = model;
        if (modelCache != null) {
            url = modelCache.get(model, 0, 0);
            if (url == null) {
                modelCache.put(model, 0, 0, model);
                url = model;
            }
        }
        return new HttpUrlFetcher(url);
    }
}

 

可以看到,HttpUrlGlideUrlLoader.Factory是一个内部类,外层的HttpUrlGlideUrlLoader类实现了ModelLoader<GlideUrl, InputStream>这个接口,并重写了getResourceFetcher()方法。而在getResourceFetcher()方法中,又创建了一个HttpUrlFetcher的实例,在这里才是真正处理具体网络通讯逻辑的地方,代码如下所示:

public class HttpUrlFetcher implements DataFetcher<InputStream> {
    private static final String TAG = "HttpUrlFetcher";
    private static final int MAXIMUM_REDIRECTS = 5;
    private static final HttpUrlConnectionFactory DEFAULT_CONNECTION_FACTORY = new DefaultHttpUrlConnectionFactory();

    private final GlideUrl glideUrl;
    private final HttpUrlConnectionFactory connectionFactory;

    private HttpURLConnection urlConnection;
    private InputStream stream;
    private volatile boolean isCancelled;

    public HttpUrlFetcher(GlideUrl glideUrl) {
        this(glideUrl, DEFAULT_CONNECTION_FACTORY);
    }

    HttpUrlFetcher(GlideUrl glideUrl, HttpUrlConnectionFactory connectionFactory) {
        this.glideUrl = glideUrl;
        this.connectionFactory = connectionFactory;
    }

    @Override
    public InputStream loadData(Priority priority) throws Exception {
        return loadDataWithRedirects(glideUrl.toURL(), 0 , null , glideUrl.getHeaders());
    }

    private InputStream loadDataWithRedirects(URL url, int redirects, URL lastUrl, Map<String, String> headers)
            throws IOException {
        if (redirects >= MAXIMUM_REDIRECTS) {
            throw new IOException("Too many (> " + MAXIMUM_REDIRECTS + ") redirects!");
        } else {
            try {
                if (lastUrl != null && url.toURI().equals(lastUrl.toURI())) {
                    throw new IOException("In re-direct loop");
                }
            } catch (URISyntaxException e) {
            }
        }
        urlConnection = connectionFactory.build(url);
        for (Map.Entry<String, String> headerEntry : headers.entrySet()) {
          urlConnection.addRequestProperty(headerEntry.getKey(), headerEntry.getValue());
        }
        urlConnection.setConnectTimeout(2500);
        urlConnection.setReadTimeout(2500);
        urlConnection.setUseCaches(false);
        urlConnection.connect();
        if (isCancelled) {
            return null;
        }
        final int statusCode = urlConnection.getResponseCode();
        if (statusCode / 100 == 2) {
            return getStreamForSuccessfulRequest(urlConnection);
        } else if (statusCode / 100 == 3) {
            String redirectUrlString = urlConnection.getHeaderField("Location");
            if (TextUtils.isEmpty(redirectUrlString)) {
                throw new IOException("Received empty or null redirect url");
            }
            URL redirectUrl = new URL(url, redirectUrlString);
            return loadDataWithRedirects(redirectUrl, redirects + 1, url, headers);
        } else {
            if (statusCode == -1) {
                throw new IOException("Unable to retrieve response code from HttpUrlConnection.");
            }
            throw new IOException("Request failed " + statusCode + ": " + urlConnection.getResponseMessage());
        }
    }

    private InputStream getStreamForSuccessfulRequest(HttpURLConnection urlConnection)
            throws IOException {
        if (TextUtils.isEmpty(urlConnection.getContentEncoding())) {
            int contentLength = urlConnection.getContentLength();
            stream = ContentLengthInputStream.obtain(urlConnection.getInputStream(), contentLength);
        } else {
            stream = urlConnection.getInputStream();
        }
        return stream;
    }

    @Override
    public void cleanup() {
        if (stream != null) {
            try {
                stream.close();
            } catch (IOException e) {
            }
        }
        if (urlConnection != null) {
            urlConnection.disconnect();
        }
    }

    @Override
    public String getId() {
        return glideUrl.getCacheKey();
    }

    @Override
    public void cancel() {
        isCancelled = true;
    }

    interface HttpUrlConnectionFactory {
        HttpURLConnection build(URL url) throws IOException;
    }

    private static class DefaultHttpUrlConnectionFactory implements HttpUrlConnectionFactory {
        @Override
        public HttpURLConnection build(URL url) throws IOException {
            return (HttpURLConnection) url.openConnection();
        }
    }
}

 

上面这段代码看上去应该不费力吧?其实就是一些HttpURLConnection的用法而已。那么我们只需要仿照着HttpUrlFetcher的代码来写,并且把HTTP的通讯组件替换成OkHttp就可以了。

现在新建一个OkHttpFetcher类,并且同样实现DataFetcher<InputStream>接口,代码如下所示:

public class OkHttpFetcher implements DataFetcher<InputStream> {

    private final OkHttpClient client;
    private final GlideUrl url;
    private InputStream stream;
    private ResponseBody responseBody;
    private volatile boolean isCancelled;

    public OkHttpFetcher(OkHttpClient client, GlideUrl url) {
        this.client = client;
        this.url = url;
    }

    @Override
    public InputStream loadData(Priority priority) throws Exception {
        Request.Builder requestBuilder = new Request.Builder()
                .url(url.toStringUrl());
        for (Map.Entry<String, String> headerEntry : url.getHeaders().entrySet()) {
            String key = headerEntry.getKey();
            requestBuilder.addHeader(key, headerEntry.getValue());
        }
        requestBuilder.addHeader("httplib", "OkHttp");
        Request request = requestBuilder.build();
        if (isCancelled) {
            return null;
        }
        Response response = client.newCall(request).execute();
        responseBody = response.body();
        if (!response.isSuccessful() || responseBody == null) {
            throw new IOException("Request failed with code: " + response.code());
        }
        stream = ContentLengthInputStream.obtain(responseBody.byteStream(),
                responseBody.contentLength());
        return stream;
    }

    @Override
    public void cleanup() {
        try {
            if (stream != null) {
                stream.close();
            }
            if (responseBody != null) {
                responseBody.close();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Override
    public String getId() {
        return url.getCacheKey();
    }

    @Override
    public void cancel() {
        isCancelled = true;
    }
}

 

上面这段代码完全就是我照着HttpUrlFetcher依葫芦画瓢写出来的,用的也都是一些OkHttp的基本用法,相信不需要再做什么解释了吧。可以看到,使用OkHttp来编写网络通讯的代码要比使用HttpURLConnection简单很多,代码行数也少了很多。注意在第22行,我添加了一个httplib: OkHttp的请求头,这个是待会儿我们用来进行测试验证的,大家实际项目中的代码无须添加这个请求头。

那么我们就继续发挥依葫芦画瓢的精神,仿照着HttpUrlGlideUrlLoader再写一个OkHttpGlideUrlLoader吧。新建一个OkHttpGlideUrlLoader类,并且实现ModelLoader<GlideUrl, InputStream>接口,代码如下所示:

public class OkHttpGlideUrlLoader implements ModelLoader<GlideUrl, InputStream> {

    private OkHttpClient okHttpClient;

    public static class Factory implements ModelLoaderFactory<GlideUrl, InputStream> {

        private OkHttpClient client;

        public Factory() {
        }

        public Factory(OkHttpClient client) {
            this.client = client;
        }

        private synchronized OkHttpClient getOkHttpClient() {
            if (client == null) {
                client = new OkHttpClient();
            }
            return client;
        }

        @Override
        public ModelLoader<GlideUrl, InputStream> build(Context context, GenericLoaderFactory factories) {
            return new OkHttpGlideUrlLoader(getOkHttpClient());
        }

        @Override
        public void teardown() {
        }
    }

    public OkHttpGlideUrlLoader(OkHttpClient client) {
        this.okHttpClient = client;
    }

    @Override
    public DataFetcher<InputStream> getResourceFetcher(GlideUrl model, int width, int height) {
        return new OkHttpFetcher(okHttpClient, model);
    }
}

 

注意这里的Factory我提供了两个构造方法,一个是不带任何参数的,一个是带OkHttpClient参数的。如果对OkHttp不需要进行任何自定义的配置,那么就调用无参的Factory构造函数即可,这样会在内部自动创建一个OkHttpClient实例。但如果你需要想添加拦截器,或者修改OkHttp的默认超时等等配置,那么就自己创建一个OkHttpClient的实例,然后传入到Factory的构造方法当中就行了。

好了,现在就只差*后一步,将我们刚刚创建的OkHttpGlideUrlLoader和OkHttpFetcher注册到Glide当中,将原来的HTTP通讯组件给替换掉,如下所示:

public class MyGlideModule implements GlideModule {

    ...

    @Override
    public void registerComponents(Context context, Glide glide) {
        glide.register(GlideUrl.class, InputStream.class, new OkHttpGlideUrlLoader.Factory());
    }

}

 

可以看到,这里也是调用了Glide的register()方法来注册组件的。register()方法中使用的Map类型来存储已注册的组件,因此我们这里重新注册了一遍GlideUrl.class类型的组件,就把原来的组件给替换掉了。

理论上来说,现在我们已经成功将Glide的HTTP通讯组件替换成OkHttp了,现在唯一的问题就是我们该如何去验证一下到底有没有替换成功呢?

验证的方式我倒是想了很多种,比如添加OkHttp拦截器,或者自己架设一个测试用的服务器都是可以的。不过为了让大家*直接地看到验证结果,这里我准备使用Fiddler这个抓包工具来进行验证。这个工具的用法非常简单,但是限于篇幅我就不在本篇文章中介绍这个工具的用法了,还没用过这个工具的朋友们可以通过 这篇文章了解一下。

在开始验证之前,我们还得要再修改一下Glide加载图片的代码才行,如下所示:

String url = "http://guolin.tech/book.png";
Glide.with(this)
     .load(url)
     .skipMemoryCache(true)
     .diskCacheStrategy(DiskCacheStrategy.NONE)
     .into(imageView);

 

这里我把Glide的内存缓存和硬盘缓存都禁用掉了,不然的话,Glide可能会直接读取刚才缓存的图片,而不会再重新发起网终请求。

好的,现在我们重新使用Glide加载一下图片,然后观察Fiddler中的抓包情况,如下图所示。

%title插图%num可以看到,在HTTP请求头中确实有我们刚才自己添加的httplib: OkHttp。也就说明,Glide的HTTP通讯组件的确被替换成功了。

更简单的组件替换

上述方法是我们纯手工地将Glide的HTTP通讯组件进行了替换,如果你不想这么麻烦也是可以的,Glide官方给我们提供了非常简便的HTTP组件替换方式。并且除了支持OkHttp3之外,还支持OkHttp2和Volley。

我们只需要在gradle当中添加几行库的配置就行了。比如使用OkHttp3来作为HTTP通讯组件的配置如下:

dependencies {
    compile 'com.squareup.okhttp3:okhttp:3.9.0'
    compile 'com.github.bumptech.glide:okhttp3-integration:1.5.0@aar'
}

 

使用OkHttp2来作为HTTP通讯组件的配置如下:

dependencies {
    compile 'com.github.bumptech.glide:okhttp-integration:1.5.0@aar'
    compile 'com.squareup.okhttp:okhttp:2.7.5'
}

 

使用Volley来作为HTTP通讯组件的配置如下:

dependencies {
    compile 'com.github.bumptech.glide:volley-integration:1.5.0@aar'  
    compile 'com.mcxiaoke.volley:library:1.0.19'  
}

 

当然了,这些库背后的工作原理和我们刚才自己手动实现替换HTTP组件的原理是一模一样的。而学会了手动替换组件的原理我们就能更加轻松地扩展更多丰富的功能,因此掌握这一技能还是非常重要的。

好了,那么今天的文章就到这里了。下篇文章中,我们将会利用本篇文章中学到的知识,对Glide进行一个高级的功能扩展,感兴趣的朋友请继续阅读 Android图片加载框架*全解析(七)实现带进度的Glide图片加载功能 。

Android图片加载框架*全解析(五)Glide强大的图片变换功能

大家好,又到了学习Glide的时间了。前段时间由于项目开发紧张,再加上后来又生病了,所以停更了一个月,不过现在终于又可以恢复正常更新了。今天是这个系列的第五篇文章,在前面四篇文章的当中,我们已经学习了Glide的基本用法、Glide的工作原理和执行流程、Glide的缓存机制、以及Glide的回调机制等内容。如果你能将前面的四篇文章都掌握好了,那么恭喜你,现在你已经是一名Glide好手了。

如果你还没有阅读过前面四篇文章的话,那么可以点击后面的链接,依次向前阅读 Android图片加载框架*全解析(四)玩转Glide的回调与监听。

不过Glide的这个框架的功能实在是太强大了,它所能做的事情远远不止于目前我们所学的这些。因此,今天我们就再来学习一个新的功能模块,并且是一个非常重要的模块——Glide的图片变化功能。

一个问题

在正式开始学习Glide的图片变化功能之前,我们先来看一个问题,这个问题可能有不少人都在使用Glide的时候都遇到过,正好在本篇内容的主题之下我们顺带着将这个问题给解决了。

首先我们尝试使用Glide来加载一张图片,图片URL地址是:

https://www.baidu.com/img/bd_logo1.png
  • 1

这是百度首页logo的一张图片,图片尺寸是540*258像素。

接下来我们编写一个非常简单的布局文件,如下所示:

<LinearLayout
    xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:orientation="vertical">

    <Button
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="Load Image"
        android:onClick="loadImage"
        />

    <ImageView
        android:id="@+id/image_view"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        />
</LinearLayout>

 

布局文件中只有一个按钮和一个用于显示图片的ImageView。注意,ImageView的宽和高这里设置的都是wrap_content。

然后编写如下的代码来加载图片:

public class MainActivity extends AppCompatActivity {

    ImageView imageView;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        imageView = (ImageView) findViewById(R.id.image_view);
    }

    public void loadImage(View view) {
        String url = "https://www.baidu.com/img/bd_logo1.png";
        Glide.with(this)
             .load(url)
             .into(imageView);
    }
}

 

这些简单的代码对于现在的你而言应该都是小儿科了,相信我也不用再做什么解释。现在运行一下程序并点击加载图片按钮,效果如下图所示。

%title插图%num图片是正常加载出来了,不过大家有没有发现一个问题。百度这张logo图片的尺寸只有540*258像素,但是我的手机的分辨率却是1080*1920像素,而我们将ImageView的宽高设置的都是wrap_content,那么图片的宽度应该只有手机屏幕宽度的一半而已,但是这里却充满了全屏,这是为什么呢?

如果你之前也被这个问题困扰过,那么恭喜,本篇文章正是你所需要的。之所以会出现这个现象,就是因为Glide的图片变换功能所导致的。那么接下来我们会先分析如何解决这个问题,然后再深入学习Glide图片变化的更多功能。

稍微对Android有点了解的人应该都知道ImageView有scaleType这个属性,但是可能大多数人却不知道,如果在没有指定scaleType属性的情况下,ImageView默认的scaleType是什么?

这个问题如果直接问我,我也答不上来。不过动手才是检验真理的唯一标准,想知道答案,自己动手试一下就知道了。

public class MainActivity extends AppCompatActivity {

    private static final String TAG = "MainActivity";

    ImageView imageView;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        imageView = (ImageView) findViewById(R.id.image_view);
        Log.d(TAG, "imageView scaleType is " + imageView.getScaleType());
    }

    ...
}

 

可以看到,我们在onCreate()方法中打印了ImageView默认的scaleType,然后重新运行一下程序,结果如下图所示:

%title插图%num由此我们可以得知,在没有明确指定的情况下,ImageView默认的scaleType是FIT_CENTER。

有了这个前提条件,我们就可以继续去分析Glide的源码了。当然,本文中的源码还是建在第二篇源码分析的基础之上,还没有看过这篇文章的朋友,建议先去阅读 Android图片加载框架*全解析(二),从源码的角度理解Glide的执行流程 。

回顾一下第二篇文章中我们分析过的into()方法,它是在GenericRequestBuilder类当中的,代码如下所示:

public Target<TranscodeType> into(ImageView view) {
    Util.assertMainThread();
    if (view == null) {
        throw new IllegalArgumentException("You must pass in a non null View");
    }
    if (!isTransformationSet && view.getScaleType() != null) {
        switch (view.getScaleType()) {
            case CENTER_CROP:
                applyCenterCrop();
                break;
            case FIT_CENTER:
            case FIT_START:
            case FIT_END:
                applyFitCenter();
                break;
            //$CASES-OMITTED$
            default:
                // Do nothing.
        }
    }
    return into(glide.buildImageViewTarget(view, transcodeClass));
}

 

还记得我们当初分析这段代码的时候,直接跳过前面的所有代码,直奔*后一行。因为那个时候我们的主要任务是分析Glide的主线执行流程,而不去仔细阅读它的细节,但是现在我们是时候应该阅读一下细节了。

可以看到,这里在第7行会进行一个switch判断,如果ImageView的scaleType是CENTER_CROP,则会去调用applyCenterCrop()方法,如果scaleType是FIT_CENTER、FIT_START或FIT_END,则会去调用applyFitCenter()方法。这里的applyCenterCrop()和applyFitCenter()方法其实就是向Glide的加载流程中添加了一个图片变换操作,具体的源码我们就不跟进去看了。

那么现在我们就基本清楚了,由于ImageView默认的scaleType是FIT_CENTER,因此会自动添加一个FitCenter的图片变换,而在这个图片变换过程中做了某些操作,导致图片充满了全屏。

那么我们该如何解决这个问题呢?*直白的一种办法就是看着源码来改。当ImageView的scaleType是CENTER_CROP、FIT_CENTER、FIT_START或FIT_END时不是会自动添加一个图片变换操作吗?那我们把scaleType改成其他值不就可以了。ImageView的scaleType可选值还有CENTER、CENTER_INSIDE、FIT_XY等。这当然是一种解决方案,不过只能说是一种比较笨的解决方案,因为我们为了解决这个问题而去改动了ImageView原有的scaleType,那如果你真的需要ImageView的scaleType为CENTER_CROP或FIT_CENTER时可能就傻眼了。

上面只是我们通过分析源码得到的一种解决方案,并不推荐大家使用。实际上,Glide给我们提供了专门的API来添加和取消图片变换,想要解决这个问题只需要使用如下代码即可:

Glide.with(this)
     .load(url)
     .dontTransform()
     .into(imageView);

 

可以看到,这里调用了一个dontTransform()方法,表示让Glide在加载图片的过程中不进行图片变换,这样刚才调用的applyCenterCrop()、applyFitCenter()就统统无效了。

现在我们重新运行一下代码,效果如下图所示:

%title插图%num这样图片就只会占据半个屏幕的宽度了,说明我们的代码奏效了。

但是使用dontTransform()方法存在着一个问题,就是调用这个方法之后,所有的图片变换操作就全部失效了,那如果我有一些图片变换操作是必须要执行的该怎么办呢?不用担心,总归是有办法的,这种情况下我们只需要借助override()方法强制将图片尺寸指定成原始大小就可以了,代码如下所示:

Glide.with(this)
     .load(url)
     .override(Target.SIZE_ORIGINAL, Target.SIZE_ORIGINAL)
     .into(imageView);

 

通过override()方法将图片的宽和高都指定成Target.SIZE_ORIGINAL,问题同样被解决了。程序的*终运行结果和上图是完全一样的,我就不再重新截图了。

由此我们可以看出,之所以会出现这个问题,和Glide的图片变换功能是撇不开关系的。那么也是通过这个问题,我们对Glide的图片变换有了一个*基本的认识。接下来,就让我们正式开始进入本篇文章的正题吧。

图片变换的基本用法

顾名思义,图片变换的意思就是说,Glide从加载了原始图片到*终展示给用户之前,又进行了一些变换处理,从而能够实现一些更加丰富的图片效果,如图片圆角化、圆形化、模糊化等等。

添加图片变换的用法非常简单,我们只需要调用transform()方法,并将想要执行的图片变换操作作为参数传入transform()方法即可,如下所示:

Glide.with(this)
     .load(url)
     .transform(...)
     .into(imageView);

 

至于具体要进行什么样的图片变换操作,这个通常都是需要我们自己来写的。不过Glide已经内置了两种图片变换操作,我们可以直接拿来使用,一个是CenterCrop,一个是FitCenter。

但这两种内置的图片变换操作其实都不需要使用transform()方法,Glide为了方便我们使用直接提供了现成的API:

Glide.with(this)
     .load(url)
     .centerCrop()
     .into(imageView);

Glide.with(this)
     .load(url)
     .fitCenter()
     .into(imageView);

 

当然,centerCrop()和fitCenter()方法其实也只是对transform()方法进行了一层封装而已,它们背后的源码仍然还是借助transform()方法来实现的,如下所示:

public class DrawableRequestBuilder<ModelType>
        extends GenericRequestBuilder<ModelType, ImageVideoWrapper, GifBitmapWrapper, GlideDrawable>
        implements BitmapOptions, DrawableOptions {
    ...

    /**
     * Transform {@link GlideDrawable}s using {@link com.bumptech.glide.load.resource.bitmap.CenterCrop}.
     *
     * @see #fitCenter()
     * @see #transform(BitmapTransformation...)
     * @see #bitmapTransform(Transformation[])
     * @see #transform(Transformation[])
     *
     * @return This request builder.
     */
    @SuppressWarnings("unchecked")
    public DrawableRequestBuilder<ModelType> centerCrop() {
        return transform(glide.getDrawableCenterCrop());
    }

    /**
     * Transform {@link GlideDrawable}s using {@link com.bumptech.glide.load.resource.bitmap.FitCenter}.
     *
     * @see #centerCrop()
     * @see #transform(BitmapTransformation...)
     * @see #bitmapTransform(Transformation[])
     * @see #transform(Transformation[])
     *
     * @return This request builder.
     */
    @SuppressWarnings("unchecked")
    public DrawableRequestBuilder<ModelType> fitCenter() {
        return transform(glide.getDrawableFitCenter());
    }

    ...
}

 

那么这两种内置的图片变换操作到底能实现什么样的效果呢?FitCenter的效果其实刚才我们已经见识过了,就是会将图片按照原始的长宽比充满全屏。那么CenterCrop又是什么样的效果呢?我们来动手试一下就知道了。

为了让效果更加明显,这里我就不使用百度首页的Logo图了,而是换成必应首页的一张美图。在不应用任何图片变换的情况下,使用Glide加载必应这张图片效果如下所示。

%title插图%num现在我们添加一个CenterCrop的图片变换操作,代码如下:

String url = "http://cn.bing.com/az/hprichbg/rb/AvalancheCreek_ROW11173354624_1920x1080.jpg";
Glide.with(this)
     .load(url)
     .centerCrop()
     .into(imageView);

 

重新运行一下程序并点击加载图片按钮,效果如下图所示。

%title插图%num可以看到,现在展示的图片是对原图的中心区域进行裁剪后得到的图片。

另外,centerCrop()方法还可以配合override()方法来实现更加丰富的效果,比如指定图片裁剪的比例:

String url = "http://cn.bing.com/az/hprichbg/rb/AvalancheCreek_ROW11173354624_1920x1080.jpg";
Glide.with(this)
     .load(url)
     .override(500, 500)
     .centerCrop()
     .into(imageView);

 

可以看到,这里我们将图片的尺寸设定为500*500像素,那么裁剪的比例也就变成1:1了,现在重新运行一下程序,效果如下图所示。

%title插图%num这样我们就把Glide内置的图片变换接口的用法都掌握了。不过不得不说,Glide内置的图片变换接口功能十分单一且有限,完全没有办法满足我们平时的开发需求。因此,掌握自定义图片变换功能就显得尤为重要了。

不过,在正式开始学习自定义图片变换功能之前,我们先来探究一下CenterCrop这种图片变换的源码,理解了它的源码我们再来进行自定义图片变换就能更加得心应手了。

源码分析

那么就话不多说,我们直接打开CenterCrop类来看一下它的源码吧,如下所示:

public class CenterCrop extends BitmapTransformation {

    public CenterCrop(Context context) {
        super(context);
    }

    public CenterCrop(BitmapPool bitmapPool) {
        super(bitmapPool);
    }

    // Bitmap doesn't implement equals, so == and .equals are equivalent here.
    @SuppressWarnings("PMD.CompareObjectsWithEquals")
    @Override
    protected Bitmap transform(BitmapPool pool, Bitmap toTransform, int outWidth, int outHeight) {
        final Bitmap toReuse = pool.get(outWidth, outHeight, toTransform.getConfig() != null
                ? toTransform.getConfig() : Bitmap.Config.ARGB_8888);
        Bitmap transformed = TransformationUtils.centerCrop(toReuse, toTransform, outWidth, outHeight);
        if (toReuse != null && toReuse != transformed && !pool.put(toReuse)) {
            toReuse.recycle();
        }
        return transformed;
    }

    @Override
    public String getId() {
        return "CenterCrop.com.bumptech.glide.load.resource.bitmap";
    }
}

 

这段代码并不长,但是我还是要划下重点,这样大家看起来的时候会更加轻松。

首先,CenterCrop是继承自BitmapTransformation的,这个是重中之重,因为整个图片变换功能都是建立在这个继承结构基础上的。

接下来CenterCrop中*重要的就是transform()方法,其他的方法我们可以暂时忽略。transform()方法中有四个参数,每一个都很重要,我们来一一解读下。*个参数pool,这个是Glide中的一个Bitmap缓存池,用于对Bitmap对象进行重用,否则每次图片变换都重新创建Bitmap对象将会非常消耗内存。第二个参数toTransform,这个是原始图片的Bitmap对象,我们就是要对它来进行图片变换。第三和第四个参数比较简单,分别代表图片变换后的宽度和高度,其实也就是override()方法中传入的宽和高的值了。

下面我们来看一下transform()方法的细节,首先*行就从Bitmap缓存池中尝试获取一个可重用的Bitmap对象,然后把这个对象连同toTransform、outWidth、outHeight参数一起传入到了TransformationUtils.centerCrop()方法当中。那么我们就跟进去来看一下这个方法的源码,如下所示:

public final class TransformationUtils {
    ...

    public static Bitmap centerCrop(Bitmap recycled, Bitmap toCrop, int width, int height) {
        if (toCrop == null) {
            return null;
        } else if (toCrop.getWidth() == width && toCrop.getHeight() == height) {
            return toCrop;
        }
        // From ImageView/Bitmap.createScaledBitmap.
        final float scale;
        float dx = 0, dy = 0;
        Matrix m = new Matrix();
        if (toCrop.getWidth() * height > width * toCrop.getHeight()) {
            scale = (float) height / (float) toCrop.getHeight();
            dx = (width - toCrop.getWidth() * scale) * 0.5f;
        } else {
            scale = (float) width / (float) toCrop.getWidth();
            dy = (height - toCrop.getHeight() * scale) * 0.5f;
        }
        m.setScale(scale, scale);
        m.postTranslate((int) (dx + 0.5f), (int) (dy + 0.5f));

        final Bitmap result;
        if (recycled != null) {
            result = recycled;
        } else {
            result = Bitmap.createBitmap(width, height, getSafeConfig(toCrop));
        }

        // We don't add or remove alpha, so keep the alpha setting of the Bitmap we were given.
        TransformationUtils.setAlpha(toCrop, result);

        Canvas canvas = new Canvas(result);
        Paint paint = new Paint(PAINT_FLAGS);
        canvas.drawBitmap(toCrop, m, paint);
        return result;
    }

    ...
}

 

这段代码就是整个图片变换功能的核心代码了。可以看到,第5-9行主要是先做了一些校验,如果原图为空,或者原图的尺寸和目标裁剪尺寸相同,那么就放弃裁剪。接下来第11-22行是通过数学计算来算出画布的缩放的比例以及偏移值。第24-29行是判断缓存池中取出的Bitmap对象是否为空,如果不为空就可以直接使用,如果为空则要创建一个新的Bitmap对象。第32行是将原图Bitmap对象的alpha值复制到裁剪Bitmap对象上面。*后第34-37行是裁剪Bitmap对象进行绘制,并将*终的结果进行返回。全部的逻辑就是这样,总体来说还是比较简单的,可能也就是数学计算那边需要稍微动下脑筋。

那么现在得到了裁剪后的Bitmap对象,我们再回到CenterCrop当中,你会看到,在*终返回这个Bitmap对象之前,还会尝试将复用的Bitmap对象重新放回到缓存池当中,以便下次继续使用。

好的,这样我们就将CenterCrop图片变换的工作原理完整地分析了一遍,FitCenter的源码也是基本类似的,这里就不再重复分析了。了解了这些内容之后,接下来我们就可以开始学习自定义图片变换功能了。

自定义图片变换

Glide给我们定制好了一个图片变换的框架,大致的流程是我们可以获取到原始的图片,然后对图片进行变换,再将变换完成后的图片返回给Glide,*终由Glide将图片显示出来。理论上,在对图片进行变换这个步骤中我们可以进行任何的操作,你想对图片怎么样都可以。包括圆角化、圆形化、黑白化、模糊化等等,甚至你将原图片完全替换成另外一张图都是可以的。

但是这里显然我不可能向大家演示所有图片变换的可能,图片变换的可能性也是无限的。因此这里我们就选择一种常用的图片变换效果来进行自定义吧——对图片进行圆形化变换。

图片圆形化的功能现在在手机应用中非常常见,比如手机QQ就会将用户的头像进行圆形化变换,从而使得界面变得更加好看。

自定义图片变换功能的实现逻辑比较固定,我们刚才看过CenterCrop的源码之后,相信你已经基本了解整个自定义的过程了。其实就是自定义一个类让它继承自BitmapTransformation ,然后重写transform()方法,并在这里去实现具体的图片变换逻辑就可以了。一个空的图片变换实现大概如下所示:

public class CircleCrop extends BitmapTransformation {

    public CircleCrop(Context context) {
        super(context);
    }

    public CircleCrop(BitmapPool bitmapPool) {
        super(bitmapPool);
    }

    @Override
    public String getId() {
        return "com.example.glidetest.CircleCrop";
    }

    @Override
    protected Bitmap transform(BitmapPool pool, Bitmap toTransform, int outWidth, int outHeight) {
        return null;
    }
}

 

这里有一点需要注意,就是getId()方法中要求返回一个唯一的字符串来作为id,以和其他的图片变换做区分。通常情况下,我们直接返回当前类的完整类名就可以了。

另外,这里我们选择继承BitmapTransformation还有一个限制,就是只能对静态图进行图片变换。当然,这已经足够覆盖日常95%以上的开发需求了。如果你有特殊的需求要对GIF图进行图片变换,那就得去自己实现Transformation接口才可以了。不过这个就非常复杂了,不在我们今天的讨论范围。

好了,那么我们继续实现对图片进行圆形化变换的功能,接下来只需要在transform()方法中去做具体的逻辑实现就可以了,代码如下所示:

public class CircleCrop extends BitmapTransformation {

    public CircleCrop(Context context) {
        super(context);
    }

    public CircleCrop(BitmapPool bitmapPool) {
        super(bitmapPool);
    }

    @Override
    public String getId() {
        return "com.example.glidetest.CircleCrop";
    }

    @Override
    protected Bitmap transform(BitmapPool pool, Bitmap toTransform, int outWidth, int outHeight) {
        int diameter = Math.min(toTransform.getWidth(), toTransform.getHeight());

        final Bitmap toReuse = pool.get(outWidth, outHeight, Bitmap.Config.ARGB_8888);
        final Bitmap result;
        if (toReuse != null) {
            result = toReuse;
        } else {
            result = Bitmap.createBitmap(diameter, diameter, Bitmap.Config.ARGB_8888);
        }

        int dx = (toTransform.getWidth() - diameter) / 2;
        int dy = (toTransform.getHeight() - diameter) / 2;
        Canvas canvas = new Canvas(result);
        Paint paint = new Paint();
        BitmapShader shader = new BitmapShader(toTransform, BitmapShader.TileMode.CLAMP, 
                                            BitmapShader.TileMode.CLAMP);
        if (dx != 0 || dy != 0) {
            Matrix matrix = new Matrix();
            matrix.setTranslate(-dx, -dy);
            shader.setLocalMatrix(matrix);
        }
        paint.setShader(shader);
        paint.setAntiAlias(true);
        float radius = diameter / 2f;
        canvas.drawCircle(radius, radius, radius, paint);

        if (toReuse != null && !pool.put(toReuse)) {
            toReuse.recycle();
        }
        return result;
    }
}

 

下面我来对transform()方法中的逻辑做下简单的解释。首先第18行先算出原图宽度和高度中较小的值,因为对图片进行圆形化变换肯定要以较小的那个值作为直径来进行裁剪。第20-26行则和刚才一样,从Bitmap缓存池中尝试获取一个Bitmap对象来进行重用,如果没有可重用的Bitmap对象的话就创建一个。第28-41行是具体进行圆形化变换的部分,这里算出了画布的偏移值,并且根据刚才得到的直径算出半径来进行画圆。*后,尝试将复用的Bitmap对象重新放回到缓存池当中,并将圆形化变换后的Bitmap对象进行返回。

这样,一个自定义图片变换的功能就写好了,那么现在我们就来尝试使用一下它吧。使用方法非常简单,刚才已经介绍过了,就是把这个自定义图片变换的实例传入到transform()方法中即可,如下所示:

Glide.with(this)
     .load(url)
     .transform(new CircleCrop(this))
     .into(imageView);

 

现在我们重新运行一下程序,效果如下图所示。

%title插图%num

更多图片变换功能

虽说Glide的图片变换功能框架已经很强大了,使得我们可以轻松地自定义图片变换效果,但是如果每一种图片变换都要我们自己去写还是蛮吃力的。事实上,确实也没有必要完全靠自己去实现各种各样的图片变换效果,因为大多数的图片变换都是比较通用的,各个项目会用到的效果都差不多,我们每一个都自己去重新实现无异于重复造轮子。

也正是因此,网上出现了很多Glide的图片变换开源库,其中做的*出色的应该要数glide-transformations这个库了。它实现了很多通用的图片变换效果,如裁剪变换、颜色变换、模糊变换等等,使得我们可以非常轻松地进行各种各样的图片变换。

glide-transformations的项目主页地址是 https://github.com/wasabeef/glide-transformations 。

下面我们就来体验一下这个库的强大功能吧。首先需要将这个库引入到我们的项目当中,在app/build.gradle文件当中添加如下依赖:

dependencies {
    compile 'jp.wasabeef:glide-transformations:2.0.2'
}

 

现在如果我想对图片进行模糊化处理,那么就可以使用glide-transformations库中的BlurTransformation这个类,代码如下所示:

Glide.with(this)
     .load(url)
     .bitmapTransform(new BlurTransformation(this))
     .into(imageView);

 

注意这里我们调用的是bitmapTransform()方法而不是transform()方法,因为glide-transformations库都是专门针对静态图片变换来进行设计的。现在重新运行一下程度,效果如下图所示。

%title插图%num没错,我们就这样轻松地实现模糊化的效果了。

接下来我们再试一下图片黑白化的效果,使用的是GrayscaleTransformation这个类,代码如下所示:

Glide.with(this)
     .load(url)
     .bitmapTransform(new GrayscaleTransformation(this))
     .into(imageView);

 

现在重新运行一下程度,效果如下图所示。

%title插图%num而且我们还可以将多个图片变换效果组合在一起使用,比如同时执行模糊化和黑白化的变换:

Glide.with(this)
     .load(url)
     .bitmapTransform(new BlurTransformation(this), new GrayscaleTransformation(this))
     .into(imageView);

 

可以看到,同时执行多种图片变换的时候,只需要将它们都传入到bitmapTransform()方法中即可。现在重新运行一下程序,效果如下图所示。

%title插图%num当然,这些只是glide-transformations库的一小部分功能而已,更多的图片变换效果你可以到它的GitHub项目主页去学习,所有变换的用法都是这么简单哦。

好了,那么今天的文章就到这里了,相信大家的收获都很多吧。下篇文章中我们会继续深入探究Glide,学习一下自定义模块的功能,感兴趣的朋友请继续阅读 Android图片加载框架*全解析(六)探究Glide的自定义模块功能 。

Android图片加载框架*全解析(四)玩转Glide的回调与监听

大家好,今天我们继续学习Glide。

在上一篇文章当中,我带着大家一起深入探究了Glide的缓存机制,我们不光掌握了Glide缓存的使用方法,还通过源码分析对缓存的工作原理进行了了解。虽说上篇文章和本篇文章的内容关系并不是很大,不过感兴趣的朋友还是可以去阅读一下 Android图片加载框架*全解析(三)深入探究Glide的缓存机制 。

今天是这个Glide系列的第四篇文章,我们又要选取一个新的功能模块开始学习了,那么就来研究一下Glide的回调和监听功能吧。今天的学习模式仍然是以基本用法和源码分析相结合的方式来进行的,当然,本文中的源码还是建在第二篇源码分析的基础之上,还没有看过这篇文章的朋友,建议先去阅读 Android图片加载框架*全解析(二)从源码的角度理解Glide的执行流程 。

回调的源码实现

作为一名Glide老手,相信大家对于Glide的基本用法已经非常熟练了。我们都知道,使用Glide在界面上加载并展示一张图片只需要一行代码:

Glide.with(this).load(url).into(imageView);

 

而在这一行代码的背后,Glide帮我们执行了成千上万行的逻辑。其实在第二篇文章当中,我们已经分析了这一行代码背后的完整执行流程,但是这里我准备再带着大家单独回顾一下回调这部分的源码,这将有助于我们今天这篇文章的学习。

首先来看一下into()方法,这里我们将ImageView的实例传入到into()方法当中,Glide将图片加载完成之后,图片就能显示到ImageView上了。这是怎么实现的呢?我们来看一下into()方法的源码:

public Target<TranscodeType> into(ImageView view) {
    Util.assertMainThread();
    if (view == null) {
        throw new IllegalArgumentException("You must pass in a non null View");
    }
    if (!isTransformationSet && view.getScaleType() != null) {
        switch (view.getScaleType()) {
            case CENTER_CROP:
                applyCenterCrop();
                break;
            case FIT_CENTER:
            case FIT_START:
            case FIT_END:
                applyFitCenter();
                break;
            default:
                // Do nothing.
        }
    }
    return into(glide.buildImageViewTarget(view, transcodeClass));
}

 

可以看到,*后一行代码会调用glide.buildImageViewTarget()方法构建出一个Target对象,然后再把它传入到另一个接收Target参数的into()方法中。Target对象则是用来*终展示图片用的,如果我们跟进到glide.buildImageViewTarget()方法中,你会看到如下的源码:

public class ImageViewTargetFactory {

    @SuppressWarnings("unchecked")
    public <Z> Target<Z> buildTarget(ImageView view, Class<Z> clazz) {
        if (GlideDrawable.class.isAssignableFrom(clazz)) {
            return (Target<Z>) new GlideDrawableImageViewTarget(view);
        } else if (Bitmap.class.equals(clazz)) {
            return (Target<Z>) new BitmapImageViewTarget(view);
        } else if (Drawable.class.isAssignableFrom(clazz)) {
            return (Target<Z>) new DrawableImageViewTarget(view);
        } else {
            throw new IllegalArgumentException("Unhandled class: " + clazz
                    + ", try .as*(Class).transcode(ResourceTranscoder)");
        }
    }
}

 

buildTarget()方法会根据传入的class参数来构建不同的Target对象,如果你在使用Glide加载图片的时候调用了asBitmap()方法,那么这里就会构建出BitmapImageViewTarget对象,否则的话构建的都是GlideDrawableImageViewTarget对象。至于上述代码中的DrawableImageViewTarget对象,这个通常都是用不到的,我们可以暂时不用管它。

之后就会把这里构建出来的Target对象传入到GenericRequest当中,而Glide在图片加载完成之后又会回调GenericRequest的onResourceReady()方法,我们来看一下这部分源码:

public final class GenericRequest<A, T, Z, R> implements Request, SizeReadyCallback,
        ResourceCallback {

    private Target<R> target;
    ...

    private void onResourceReady(Resource<?> resource, R result) {
        boolean isFirstResource = isFirstReadyResource();
        status = Status.COMPLETE;
        this.resource = resource;
        if (requestListener == null || !requestListener.onResourceReady(result, model, target,
                loadedFromMemoryCache, isFirstResource)) {
            GlideAnimation<R> animation = animationFactory.build(loadedFromMemoryCache, isFirstResource);
            target.onResourceReady(result, animation);
        }
        notifyLoadSuccess();
    }
    ...
}

 

这里在第14行调用了target.onResourceReady()方法,而刚才我们已经知道,这里的target就是GlideDrawableImageViewTarget对象,那么我们再来看一下它的源码:

public class GlideDrawableImageViewTarget extends ImageViewTarget<GlideDrawable> {
    ...

    @Override
    public void onResourceReady(GlideDrawable resource, GlideAnimation<? super GlideDrawable> animation) {
        if (!resource.isAnimated()) {
            float viewRatio = view.getWidth() / (float) view.getHeight();
            float drawableRatio = resource.getIntrinsicWidth() / (float) resource.getIntrinsicHeight();
            if (Math.abs(viewRatio - 1f) <= SQUARE_RATIO_MARGIN
                    && Math.abs(drawableRatio - 1f) <= SQUARE_RATIO_MARGIN) {
                resource = new SquaringDrawable(resource, view.getWidth());
            }
        }
        super.onResourceReady(resource, animation);
        this.resource = resource;
        resource.setLoopCount(maxLoopCount);
        resource.start();
    }

    @Override
    protected void setResource(GlideDrawable resource) {
        view.setImageDrawable(resource);
    }

    ...
}

 

可以看到,这里在onResourceReady()方法中处理了图片展示,还有GIF播放的逻辑,那么一张图片也就显示出来了,这也就是Glide回调的基本实现原理。

好的,那么原理就先分析到这儿,接下来我们就来看一下在回调和监听方面还有哪些知识是可以扩展的。

into()方法

使用了这么久的Glide,我们都知道into()方法中是可以传入ImageView的。那么into()方法还可以传入别的参数吗?我可以让Glide加载出来的图片不显示到ImageView上吗?答案是肯定的,这就需要用到自定义Target功能。

其实通过上面的分析,我们已经知道了,into()方法还有一个接收Target参数的重载。即使我们传入的参数是ImageView,Glide也会在内部自动构建一个Target对象。而如果我们能够掌握自定义Target技术的话,就可以更加随心所欲地控制Glide的回调了。

我们先来看一下Glide中Target的继承结构图吧,如下所示:

%title插图%num可以看到,Target的继承结构还是相当复杂的,实现Target接口的子类非常多。不过你不用被这么多的子类所吓到,这些大多数都是Glide已经实现好的具备完整功能的Target子类,如果我们要进行自定义的话,通常只需要在两种Target的基础上去自定义就可以了,一种是SimpleTarget,一种是ViewTarget。

接下来我就分别以这两种Target来举例,学习一下自定义Target的功能。

首先来看SimpleTarget,顾名思义,它是一种*为简单的Target,我们使用它可以将Glide加载出来的图片对象获取到,而不是像之前那样只能将图片在ImageView上显示出来。

那么下面我们来看一下SimpleTarget的用法示例吧,其实非常简单:

SimpleTarget<GlideDrawable> simpleTarget = new SimpleTarget<GlideDrawable>() {
    @Override
    public void onResourceReady(GlideDrawable resource, GlideAnimation glideAnimation) {
        imageView.setImageDrawable(resource);
    }
};

public void loadImage(View view) {
    String url = "http://cn.bing.com/az/hprichbg/rb/TOAD_ZH-CN7336795473_1920x1080.jpg";
    Glide.with(this)
         .load(url)
         .into(simpleTarget);
}

 

怎么样?不愧是SimpleTarget吧,短短几行代码就搞了。这里我们创建了一个SimpleTarget的实例,并且指定它的泛型是GlideDrawable,然后重写了onResourceReady()方法。在onResourceReady()方法中,我们就可以获取到Glide加载出来的图片对象了,也就是方法参数中传过来的GlideDrawable对象。有了这个对象之后你可以使用它进行任意的逻辑操作,这里我只是简单地把它显示到了ImageView上。

SimpleTarget的实现创建好了,那么只需要在加载图片的时候将它传入到into()方法中就可以了,现在运行一下程序,效果如下图所示。

%title插图%num虽然目前这个效果和直接在into()方法中传入ImageView并没有什么区别,但是我们已经拿到了图片对象的实例,然后就可以随意做更多的事情了。

当然,SimpleTarget中的泛型并不一定只能是GlideDrawable,如果你能确定你正在加载的是一张静态图而不是GIF图的话,我们还能直接拿到这张图的Bitmap对象,如下所示:

SimpleTarget<Bitmap> simpleTarget = new SimpleTarget<Bitmap>() {
    @Override
    public void onResourceReady(Bitmap resource, GlideAnimation glideAnimation) {
        imageView.setImageBitmap(resource);
    }
};

public void loadImage(View view) {
    String url = "http://cn.bing.com/az/hprichbg/rb/TOAD_ZH-CN7336795473_1920x1080.jpg";
    Glide.with(this)
         .load(url)
         .asBitmap()
         .into(simpleTarget);
}

可以看到,这里我们将SimpleTarget的泛型指定成Bitmap,然后在加载图片的时候调用了asBitmap()方法强制指定这是一张静态图,这样就能在onResourceReady()方法中获取到这张图的Bitmap对象了。

好了,SimpleTarget的用法就是这么简单,接下来我们学习一下ViewTarget的用法。

事实上,从刚才的继承结构图上就能看出,Glide在内部自动帮我们创建的GlideDrawableImageViewTarget就是ViewTarget的子类。只不过GlideDrawableImageViewTarget被限定只能作用在ImageView上,而ViewTarget的功能更加广泛,它可以作用在任意的View上。

这里我们还是通过一个例子来演示一下吧,比如我创建了一个自定义布局MyLayout,如下所示:

public class MyLayout extends LinearLayout {

    private ViewTarget<MyLayout, GlideDrawable> viewTarget;

    public MyLayout(Context context, AttributeSet attrs) {
        super(context, attrs);
        viewTarget = new ViewTarget<MyLayout, GlideDrawable>(this) {
            @Override
            public void onResourceReady(GlideDrawable resource, GlideAnimation glideAnimation) {
                MyLayout myLayout = getView();
                myLayout.setImageAsBackground(resource);
            }
        };
    }

    public ViewTarget<MyLayout, GlideDrawable> getTarget() {
        return viewTarget;
    }

    public void setImageAsBackground(GlideDrawable resource) {
        setBackground(resource);
    }

}

 

在MyLayout的构造函数中,我们创建了一个ViewTarget的实例,并将Mylayout当前的实例this传了进去。ViewTarget中需要指定两个泛型,一个是View的类型,一个图片的类型(GlideDrawable或Bitmap)。然后在onResourceReady()方法中,我们就可以通过getView()方法获取到MyLayout的实例,并调用它的任意接口了。比如说这里我们调用了setImageAsBackground()方法来将加载出来的图片作为MyLayout布局的背景图。

接下来看一下怎么使用这个Target吧,由于MyLayout中已经提供了getTarget()接口,我们只需要在加载图片的地方这样写就可以了:

public class MainActivity extends AppCompatActivity {

    MyLayout myLayout;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        myLayout = (MyLayout) findViewById(R.id.background);
    }

    public void loadImage(View view) {
        String url = "http://cn.bing.com/az/hprichbg/rb/TOAD_ZH-CN7336795473_1920x1080.jpg";
        Glide.with(this)
             .load(url)
             .into(myLayout.getTarget());
    }

}

 

就是这么简单,在into()方法中传入myLayout.getTarget()即可。现在重新运行一下程序,效果如下图所示。

%title插图%num好的,关于自定义Target的功能我们就介绍这么多,这些虽说都是自定义Target*基本的用法,但掌握了这些用法之后,你就能应对各种各样复杂的逻辑了。

preload()方法

Glide加载图片虽说非常智能,它会自动判断该图片是否已经有缓存了,如果有的话就直接从缓存中读取,没有的话再从网络去下载。但是如果我希望提前对图片进行一个预加载,等真正需要加载图片的时候就直接从缓存中读取,不想再等待慢长的网络加载时间了,这该怎么办呢?

对于很多Glide新手来说这确实是一个烦恼的问题,因为在没有学习本篇文章之前,into()方法中必须传入一个ImageView呀,而传了ImageView之后图片就显示出来了,这还怎么预加载呢?

不过在学习了本篇文章之后,相信你已经能够想到解决方案了。因为into()方法中除了传入ImageView之后还可以传入Target对象,如果我们在Target对象的onResourceReady()方法中做一个空实现,也就是不做任何逻辑处理,那么图片自然也就显示不出来了,而Glide的缓存机制却仍然还会正常工作,这样不就实现预加载功能了吗?

没错,上述的做法完全可以实现预加载功能,不过有没有感觉这种实现方式有点笨笨的。事实上,Glide专门给我们提供了预加载的接口,也就是preload()方法,我们只需要直接使用就可以了。

preload()方法有两个方法重载,一个不带参数,表示将会加载图片的原始尺寸,另一个可以通过参数指定加载图片的宽和高。

preload()方法的用法也非常简单,直接使用它来替换into()方法即可,如下所示:

Glide.with(this)
     .load(url)
     .diskCacheStrategy(DiskCacheStrategy.SOURCE)
     .preload();

 

需要注意的是,我们如果使用了preload()方法,*好要将diskCacheStrategy的缓存策略指定成DiskCacheStrategy.SOURCE。因为preload()方法默认是预加载的原始图片大小,而into()方法则默认会根据ImageView控件的大小来动态决定加载图片的大小。因此,如果不将diskCacheStrategy的缓存策略指定成DiskCacheStrategy.SOURCE的话,很容易会造成我们在预加载完成之后再使用into()方法加载图片,却仍然还是要从网络上去请求图片这种现象。

调用了预加载之后,我们以后想再去加载这张图片就会非常快了,因为Glide会直接从缓存当中去读取图片并显示出来,代码如下所示:

Glide.with(this)
     .load(url)
     .diskCacheStrategy(DiskCacheStrategy.SOURCE)
     .into(imageView);

 

注意,这里我们仍然需要使用diskCacheStrategy()方法将硬盘缓存策略指定成DiskCacheStrategy.SOURCE,以保证Glide一定会去读取刚才预加载的图片缓存。

preload()方法的用法大概就是这么简单,但是仅仅会使用显然层次有些太低了,下面我们就满足一下好奇心,看看它的源码是如何实现的。

和into()方法一样,preload()方法也是在GenericRequestBuilder类当中的,代码如下所示:

public class GenericRequestBuilder<ModelType, DataType, ResourceType, TranscodeType> implements Cloneable {
    ...

    public Target<TranscodeType> preload(int width, int height) {
        final PreloadTarget<TranscodeType> target = PreloadTarget.obtain(width, height);
        return into(target);
    }

    public Target<TranscodeType> preload() {
        return preload(Target.SIZE_ORIGINAL, Target.SIZE_ORIGINAL);
    }

    ...
}

 

正如刚才所说,preload()方法有两个方法重载,你可以调用带参数的preload()方法来明确指定图片的宽和高,也可以调用不带参数的preload()方法,它会在内部自动将图片的宽和高都指定成Target.SIZE_ORIGINAL,也就是图片的原始尺寸。

然后我们可以看到,这里在第5行调用了PreloadTarget.obtain()方法获取一个PreloadTarget的实例,并把它传入到了into()方法当中。从刚才的继承结构图中可以看出,PreloadTarget是SimpleTarget的子类,因此它是可以直接传入到into()方法中的。

那么现在的问题就是,PreloadTarget具体的实现到底是什么样子的了,我们看一下它的源码,如下所示:

public final class PreloadTarget<Z> extends SimpleTarget<Z> {

    public static <Z> PreloadTarget<Z> obtain(int width, int height) {
        return new PreloadTarget<Z>(width, height);
    }

    private PreloadTarget(int width, int height) {
        super(width, height);
    }

    @Override
    public void onResourceReady(Z resource, GlideAnimation<? super Z> glideAnimation) {
        Glide.clear(this);
    }
}

 

PreloadTarget的源码非常简单,obtain()方法中就是new了一个PreloadTarget的实例而已,而onResourceReady()方法中也没做什么事情,只是调用了Glide.clear()方法。

这里的Glide.clear()并不是清空缓存的意思,而是表示加载已完成,释放资源的意思,因此不用在这里产生疑惑。

其实PreloadTarget的思想和我们刚才提到设计思路是一样的,就是什么都不做就可以了。因为图片加载完成之后只将它缓存而不去显示它,那不就相当于预加载了嘛。

preload()方法不管是在用法方面还是源码实现方面都还是非常简单的,那么关于这个方法我们就学到这里。

downloadOnly()方法

一直以来,我们使用Glide都是为了将图片显示到界面上。虽然我们知道Glide会在图片的加载过程中对图片进行缓存,但是缓存文件到底是存在哪里的,以及如何去直接访问这些缓存文件?我们都还不知道。

其实Glide将图片加载接口设计成这样也是希望我们使用起来更加的方便,不用过多去考虑底层的实现细节。但如果我现在就是想要去访问图片的缓存文件该怎么办呢?这就需要用到downloadOnly()方法了。

和preload()方法类似,downloadOnly()方法也是可以替换into()方法的,不过downloadOnly()方法的用法明显要比preload()方法复杂不少。顾名思义,downloadOnly()方法表示只会下载图片,而不会对图片进行加载。当图片下载完成之后,我们可以得到图片的存储路径,以便后续进行操作。

那么首先我们还是先来看下基本用法。downloadOnly()方法是定义在DrawableTypeRequest类当中的,它有两个方法重载,一个接收图片的宽度和高度,另一个接收一个泛型对象,如下所示:

  • downloadOnly(int width, int height)
  • downloadOnly(Y target)

这两个方法各自有各自的应用场景,其中downloadOnly(int width, int height)是用于在子线程中下载图片的,而downloadOnly(Y target)是用于在主线程中下载图片的。

那么我们先来看downloadOnly(int width, int height)的用法。当调用了downloadOnly(int width, int height)方法后会立即返回一个FutureTarget对象,然后Glide会在后台开始下载图片文件。接下来我们调用FutureTarget的get()方法就可以去获取下载好的图片文件了,如果此时图片还没有下载完,那么get()方法就会阻塞住,一直等到图片下载完成才会有值返回。

下面我们通过一个例子来演示一下吧,代码如下所示:

public void downloadImage(View view) {
    new Thread(new Runnable() {
        @Override
        public void run() {
            try {
                String url = "http://cn.bing.com/az/hprichbg/rb/TOAD_ZH-CN7336795473_1920x1080.jpg";
                final Context context = getApplicationContext();
                FutureTarget<File> target = Glide.with(context)
                                                 .load(url)
                                                 .downloadOnly(Target.SIZE_ORIGINAL, Target.SIZE_ORIGINAL);
                final File imageFile = target.get();
                runOnUiThread(new Runnable() {
                    @Override
                    public void run() {
                        Toast.makeText(context, imageFile.getPath(), Toast.LENGTH_LONG).show();
                    }
                });
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }).start();
}

 

这段代码稍微有一点点长,我带着大家解读一下。首先刚才说了,downloadOnly(int width, int height)方法必须要用在子线程当中,因此这里的*步就是new了一个Thread。在子线程当中,我们先获取了一个Application Context,这个时候不能再用Activity作为Context了,因为会有Activity销毁了但子线程还没执行完这种可能出现。

接下来就是Glide的基本用法,只不过将into()方法替换成了downloadOnly()方法。downloadOnly()方法会返回一个FutureTarget对象,这个时候其实Glide已经开始在后台下载图片了,我们随时都可以调用FutureTarget的get()方法来获取下载的图片文件,只不过如果图片还没下载好线程会暂时阻塞住,等下载完成了才会把图片的File对象返回。

*后,我们使用runOnUiThread()切回到主线程,然后使用Toast将下载好的图片文件路径显示出来。

现在重新运行一下代码,效果如下图所示。

%title插图%num这样我们就能清晰地看出来图片完整的缓存路径是什么了。

之后我们可以使用如下代码去加载这张图片,图片就会立即显示出来,而不用再去网络上请求了:

public void loadImage(View view) {
    String url = "http://cn.bing.com/az/hprichbg/rb/TOAD_ZH-CN7336795473_1920x1080.jpg";
    Glide.with(this)
            .load(url)
            .diskCacheStrategy(DiskCacheStrategy.SOURCE)
            .into(imageView);
}

 

需要注意的是,这里必须将硬盘缓存策略指定成DiskCacheStrategy.SOURCE或者DiskCacheStrategy.ALL,否则Glide将无法使用我们刚才下载好的图片缓存文件。

现在重新运行一下代码,效果如下图所示。

%title插图%num可以看到,图片的加载和显示是非常快的,因为Glide直接使用的是刚才下载好的缓存文件。

那么这个downloadOnly(int width, int height)方法的工作原理到底是什么样的呢?我们来简单快速地看一下它的源码吧。

首先在DrawableTypeRequest类当中可以找到定义这个方法的地方,如下所示:

public class DrawableTypeRequest<ModelType> extends DrawableRequestBuilder<ModelType>
        implements DownloadOptions {
    ...

    public FutureTarget<File> downloadOnly(int width, int height) {
        return getDownloadOnlyRequest().downloadOnly(width, height);
    }

    private GenericTranscodeRequest<ModelType, InputStream, File> getDownloadOnlyRequest() {
        return optionsApplier.apply(new GenericTranscodeRequest<ModelType, InputStream, File>(
            File.class, this, streamModelLoader, InputStream.class, File.class, optionsApplier));
    }
}

 

这里会先调用getDownloadOnlyRequest()方法得到一个GenericTranscodeRequest对象,然后再调用它的downloadOnly()方法,代码如下所示:

public class GenericTranscodeRequest<ModelType, DataType, ResourceType>
    implements DownloadOptions {
    ...

    public FutureTarget<File> downloadOnly(int width, int height) {
        return getDownloadOnlyRequest().into(width, height);
    }

    private GenericRequestBuilder<ModelType, DataType, File, File> getDownloadOnlyRequest() {
        ResourceTranscoder<File, File> transcoder = UnitTranscoder.get();
        DataLoadProvider<DataType, File> dataLoadProvider = glide.buildDataProvider(dataClass, File.class);
        FixedLoadProvider<ModelType, DataType, File, File> fixedLoadProvider =
            new FixedLoadProvider<ModelType, DataType, File, File>(modelLoader, transcoder, dataLoadProvider);
        return optionsApplier.apply(
                new GenericRequestBuilder<ModelType, DataType, File, File>(fixedLoadProvider,
                File.class, this))
                .priority(Priority.LOW)
                .diskCacheStrategy(DiskCacheStrategy.SOURCE)
                .skipMemoryCache(true);
    }
}

 

这里又是调用了一个getDownloadOnlyRequest()方法来构建了一个图片下载的请求,getDownloadOnlyRequest()方法会返回一个GenericRequestBuilder对象,接着调用它的into(width, height)方法,我们继续跟进去瞧一瞧:

public FutureTarget<TranscodeType> into(int width, int height) {
    final RequestFutureTarget<ModelType, TranscodeType> target =
            new RequestFutureTarget<ModelType, TranscodeType>(glide.getMainHandler(), width, height);
    glide.getMainHandler().post(new Runnable() {
        @Override
        public void run() {
            if (!target.isCancelled()) {
                into(target);
            }
        }
    });
    return target;
}

 

可以看到,这里首先是new出了一个RequestFutureTarget对象,RequestFutureTarget也是Target的子类之一。然后通过Handler将线程切回到主线程当中,再将这个RequestFutureTarget传入到into()方法当中。

那么也就是说,其实这里就是调用了接收Target参数的into()方法,然后Glide就开始执行正常的图片加载逻辑了。那么现在剩下的问题就是,这个RequestFutureTarget中到底处理了些什么逻辑?我们打开它的源码看一看:

public class RequestFutureTarget<T, R> implements FutureTarget<R>, Runnable {
    ...

    @Override
    public R get() throws InterruptedException, ExecutionException {
        try {
            return doGet(null);
        } catch (TimeoutException e) {
            throw new AssertionError(e);
        }
    }

    @Override
    public R get(long time, TimeUnit timeUnit) throws InterruptedException, ExecutionException, 
        TimeoutException {
        return doGet(timeUnit.toMillis(time));
    }

    @Override
    public void getSize(SizeReadyCallback cb) {
        cb.onSizeReady(width, height);
    }

    @Override
    public synchronized void onLoadFailed(Exception e, Drawable errorDrawable) {
        exceptionReceived = true;
        this.exception = e;
        waiter.notifyAll(this);
    }

    @Override
    public synchronized void onResourceReady(R resource, GlideAnimation<? super R> glideAnimation) {
        resultReceived = true;
        this.resource = resource;
        waiter.notifyAll(this);
    }

    private synchronized R doGet(Long timeoutMillis) throws ExecutionException, InterruptedException, 
        TimeoutException {
        if (assertBackgroundThread) {
            Util.assertBackgroundThread();
        }

        if (isCancelled) {
            throw new CancellationException();
        } else if (exceptionReceived) {
            throw new ExecutionException(exception);
        } else if (resultReceived) {
            return resource;
        }

        if (timeoutMillis == null) {
            waiter.waitForTimeout(this, 0);
        } else if (timeoutMillis > 0) {
            waiter.waitForTimeout(this, timeoutMillis);
        }

        if (Thread.interrupted()) {
            throw new InterruptedException();
        } else if (exceptionReceived) {
            throw new ExecutionException(exception);
        } else if (isCancelled) {
            throw new CancellationException();
        } else if (!resultReceived) {
            throw new TimeoutException();
        }

        return resource;
    }

    static class Waiter {

        public void waitForTimeout(Object toWaitOn, long timeoutMillis) throws InterruptedException {
            toWaitOn.wait(timeoutMillis);
        }

        public void notifyAll(Object toNotify) {
            toNotify.notifyAll();
        }
    }

    ...
}

 

这里我对RequestFutureTarget的源码做了一些精简,我们只看*主要的逻辑就可以了。

刚才我们已经学习过了downloadOnly()方法的基本用法,在调用了downloadOnly()方法之后,再调用FutureTarget的get()方法,就能获取到下载的图片文件了。而downloadOnly()方法返回的FutureTarget对象其实就是这个RequestFutureTarget,因此我们直接来看它的get()方法就行了。

RequestFutureTarget的get()方法中又调用了一个doGet()方法,而doGet()方法才是真正处理具体逻辑的地方。首先在doGet()方法中会判断当前是否是在子线程当中,如果不是的话会直接抛出一个异常。然后下面会判断下载是否已取消、或者已失败,如果是已取消或者已失败的话都会直接抛出一个异常。接下来会根据resultReceived这个变量来判断下载是否已完成,如果这个变量为true的话,就直接把结果进行返回。

那么如果下载还没有完成呢?我们继续往下看,接下来就进入到一个wait()当中,把当前线程给阻塞住,从而阻止代码继续往下执行。这也是为什么downloadOnly(int width, int height)方法要求必须在子线程当中使用,因为它会对当前线程进行阻塞,如果在主线程当中使用的话,那么就会让主线程卡死,从而用户无法进行任何其他操作。

那么现在线程被阻塞住了,什么时候才能恢复呢?答案在onResourceReady()方法中。可以看到,onResourceReady()方法中只有三行代码,*行把resultReceived赋值成true,说明图片文件已经下载好了,这样下次再调用get()方法时就不会再阻塞线程,而是可以直接将结果返回。第二行把下载好的图片文件赋值到一个全局的resource变量上面,这样doGet()方法就也可以访问到它。第三行notifyAll一下,通知所有wait的线程取消阻塞,这个时候图片文件已经下载好了,因此doGet()方法也就可以返回结果了。

好的,这就是downloadOnly(int width, int height)方法的基本用法和实现原理,那么下面我们来看一下downloadOnly(Y target)方法。

回想一下,其实downloadOnly(int width, int height)方法必须使用在子线程当中,*主要还是因为它在内部帮我们自动创建了一个RequestFutureTarget,是这个RequestFutureTarget要求必须在子线程当中执行。而downloadOnly(Y target)方法则要求我们传入一个自己创建的Target,因此就不受RequestFutureTarget的限制了。

但是downloadOnly(Y target)方法的用法也会相对更复杂一些,因为我们又要自己创建一个Target了,而且这次必须直接去实现*顶层的Target接口,比之前的SimpleTarget和ViewTarget都要复杂不少。

那么下面我们就来实现一个*简单的DownloadImageTarget吧,注意Target接口的泛型必须指定成File对象,这是downloadOnly(Y target)方法要求的,代码如下所示:

public class DownloadImageTarget implements Target<File> {

    private static final String TAG = "DownloadImageTarget";

    @Override
    public void onStart() {
    }

    @Override
    public void onStop() {
    }

    @Override
    public void onDestroy() {
    }

    @Override
    public void onLoadStarted(Drawable placeholder) {
    }

    @Override
    public void onLoadFailed(Exception e, Drawable errorDrawable) {
    }

    @Override
    public void onResourceReady(File resource, GlideAnimation<? super File> glideAnimation) {
        Log.d(TAG, resource.getPath());
    }

    @Override
    public void onLoadCleared(Drawable placeholder) {
    }

    @Override
    public void getSize(SizeReadyCallback cb) {
        cb.onSizeReady(Target.SIZE_ORIGINAL, Target.SIZE_ORIGINAL);
    }

    @Override
    public void setRequest(Request request) {
    }

    @Override
    public Request getRequest() {
        return null;
    }
}

 

由于是要直接实现Target接口,因此需要重写的方法非常多。这些方法大多是数Glide加载图片生命周期的一些回调,我们可以不用管它们,其中只有两个方法是必须实现的,一个是getSize()方法,一个是onResourceReady()方法。

在第二篇Glide源码解析的时候,我带着大家一起分析过,Glide在开始加载图片之前会先计算图片的大小,然后回调到onSizeReady()方法当中,之后才会开始执行图片加载。而这里,计算图片大小的任务就交给我们了。只不过这是一个*简单的Target实现,我在getSize()方法中就直接回调了Target.SIZE_ORIGINAL,表示图片的原始尺寸。

然后onResourceReady()方法我们就非常熟悉了,图片下载完成之后就会回调到这里,我在这个方法中只是打印了一下下载的图片文件的路径。

这样一个*简单的DownloadImageTarget就定义好了,使用它也非常的简单,我们不用再考虑什么线程的问题了,而是直接把它的实例传入downloadOnly(Y target)方法中即可,如下所示:

public void downloadImage(View view) {
    String url = "http://cn.bing.com/az/hprichbg/rb/TOAD_ZH-CN7336795473_1920x1080.jpg";
    Glide.with(this)
            .load(url)
            .downloadOnly(new DownloadImageTarget());
}

 

现在重新运行一下代码并点击Download Image按钮,然后观察控制台日志的输出,结果如下图所示。

%title插图%num这样我们就使用了downloadOnly(Y target)方法同样获取到下载的图片文件的缓存路径了。

好的,那么关于downloadOnly()方法我们就学到这里。

listener()方法

今天学习的内容已经够多了,下面我们就以一个简单的知识点结尾吧,Glide回调与监听的*后一部分——listener()方法。

其实listener()方法的作用非常普遍,它可以用来监听Glide加载图片的状态。举个例子,比如说我们刚才使用了preload()方法来对图片进行预加载,但是我怎样确定预加载有没有完成呢?还有如果Glide加载图片失败了,我该怎样调试错误的原因呢?答案都在listener()方法当中。

首先来看下listener()方法的基本用法吧,不同于刚才几个方法都是要替换into()方法的,listener()是结合into()方法一起使用的,当然也可以结合preload()方法一起使用。*基本的用法如下所示:

public void loadImage(View view) {
    String url = "http://cn.bing.com/az/hprichbg/rb/TOAD_ZH-CN7336795473_1920x1080.jpg";
    Glide.with(this)
            .load(url)
            .listener(new RequestListener<String, GlideDrawable>() {
                @Override
                public boolean onException(Exception e, String model, Target<GlideDrawable> target,
                    boolean isFirstResource) {
                    return false;
                }

                @Override
                public boolean onResourceReady(GlideDrawable resource, String model,
                    Target<GlideDrawable> target, boolean isFromMemoryCache, boolean isFirstResource) {
                    return false;
                }
            })
            .into(imageView);
}

这里我们在into()方法之前串接了一个listener()方法,然后实现了一个RequestListener的实例。其中RequestListener需要实现两个方法,一个onResourceReady()方法,一个onException()方法。从方法名上就可以看出来了,当图片加载完成的时候就会回调onResourceReady()方法,而当图片加载失败的时候就会回调onException()方法,onException()方法中会将失败的Exception参数传进来,这样我们就可以定位具体失败的原因了。

没错,listener()方法就是这么简单。不过还有一点需要处理,onResourceReady()方法和onException()方法都有一个布尔值的返回值,返回false就表示这个事件没有被处理,还会继续向下传递,返回true就表示这个事件已经被处理掉了,从而不会再继续向下传递。举个简单点的例子,如果我们在RequestListener的onResourceReady()方法中返回了true,那么就不会再回调Target的onResourceReady()方法了。

关于listener()方法的用法就讲这么多,不过还是老规矩,我们再来看一下它的源码是怎么实现的吧。

首先,listener()方法是定义在GenericRequestBuilder类当中的,而我们传入到listener()方法中的实例则会赋值到一个requestListener变量当中,如下所示:

public class GenericRequestBuilder<ModelType, DataType, ResourceType, TranscodeType> implements Cloneable {

    private RequestListener<? super ModelType, TranscodeType> requestListener;
    ...

    public GenericRequestBuilder<ModelType, DataType, ResourceType, TranscodeType> listener(
            RequestListener<? super ModelType, TranscodeType> requestListener) {
        this.requestListener = requestListener;
        return this;
    }

    ...
}

 

接下来在构建GenericRequest的时候这个变量也会被一起传进去,*后在图片加载完成的时候,我们会看到如下逻辑:

public final class GenericRequest<A, T, Z, R> implements Request, SizeReadyCallback,
        ResourceCallback {

    private RequestListener<? super A, R> requestListener;
    ...

    private void onResourceReady(Resource<?> resource, R result) {
        boolean isFirstResource = isFirstReadyResource();
        status = Status.COMPLETE;
        this.resource = resource;
        if (requestListener == null || !requestListener.onResourceReady(result, model, target,
                loadedFromMemoryCache, isFirstResource)) {
            GlideAnimation<R> animation = animationFactory.build(loadedFromMemoryCache, isFirstResource);
            target.onResourceReady(result, animation);
        }
        notifyLoadSuccess();
    }
    ...

可以看到,这里在第11行会先回调requestListener的onResourceReady()方法,只有当这个onResourceReady()方法返回false的时候,才会继续调用Target的onResourceReady()方法,这也就是listener()方法的实现原理。

另外一个onException()方法的实现机制也是一模一样的,代码同样是在GenericRequest类中,如下所示:

public final class GenericRequest<A, T, Z, R> implements Request, SizeReadyCallback,
        ResourceCallback {
    ...

    @Override
    public void onException(Exception e) {
        status = Status.FAILED;
        if (requestListener == null || 
                !requestListener.onException(e, model, target, isFirstReadyResource())) {
            setErrorPlaceholder(e);
        }
    }

    ...
}

 

可以看到,这里会在第9行回调requestListener的onException()方法,只有在onException()方法返回false的情况下才会继续调用setErrorPlaceholder()方法。也就是说,如果我们在onException()方法中返回了true,那么Glide请求中使用error(int resourceId)方法设置的异常占位图就失效了。

这样我们也就将listener()方法的全部实现原理都分析完了。

好了,关于Glide回调与监听方面的内容今天就讲到这里,这一篇文章的内容非常充实,希望大家都能好好掌握。下一篇文章当中,我会继续带着大家深入分析Glide的其他功能模块,讲一讲图片变换方面的知识,感兴趣的朋友请继续阅读 Android图片加载框架*全解析(五)Glide强大的图片变换功能 。

Android图片加载框架*全解析(三)深入探究Glide的缓存机制

在本系列的上一篇文章中,我带着大家一起阅读了一遍Glide的源码,初步了解了这个强大的图片加载框架的基本执行流程。

不过,上一篇文章只能说是比较粗略地阅读了Glide整个执行流程方面的源码,搞明白了Glide的基本工作原理,但并没有去深入分析每一处的细节(事实上也不可能在一篇文章中深入分析每一处源码的细节)。那么从本篇文章开始,我们就一篇篇地来针对Glide某一块功能进行深入地分析,慢慢将Glide中的各项功能进行全面掌握。

今天我们就先从缓存这一块内容开始入手吧。不过今天文章中的源码都建在上一篇源码分析的基础之上,还没有看过上一篇文章的朋友,建议先去阅读 Android图片加载框架*全解析(二),从源码的角度理解Glide的执行流程 。

Glide缓存简介

Glide的缓存设计可以说是非常先进的,考虑的场景也很周全。在缓存这一功能上,Glide又将它分成了两个模块,一个是内存缓存,一个是硬盘缓存。

这两个缓存模块的作用各不相同,内存缓存的主要作用是防止应用重复将图片数据读取到内存当中,而硬盘缓存的主要作用是防止应用重复从网络或其他地方重复下载和读取数据。

内存缓存和硬盘缓存的相互结合才构成了Glide*佳的图片缓存效果,那么接下来我们就分别来分析一下这两种缓存的使用方法以及它们的实现原理。

缓存Key

既然是缓存功能,就必然会有用于进行缓存的Key。那么Glide的缓存Key是怎么生成的呢?我不得不说,Glide的缓存Key生成规则非常繁琐,决定缓存Key的参数竟然有10个之多。不过繁琐归繁琐,至少逻辑还是比较简单的,我们先来看一下Glide缓存Key的生成逻辑。

生成缓存Key的代码在Engine类的load()方法当中,这部分代码我们在上一篇文章当中已经分析过了,只不过当时忽略了缓存相关的内容,那么我们现在重新来看一下:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {

    public <T, Z, R> LoadStatus load(Key signature, int width, int height, DataFetcher<T> fetcher,
            DataLoadProvider<T, Z> loadProvider, Transformation<Z> transformation, ResourceTranscoder<Z, R> transcoder,
            Priority priority, boolean isMemoryCacheable, DiskCacheStrategy diskCacheStrategy, ResourceCallback cb) {
        Util.assertMainThread();
        long startTime = LogTime.getLogTime();

        final String id = fetcher.getId();
        EngineKey key = keyFactory.buildKey(id, signature, width, height, loadProvider.getCacheDecoder(),
                loadProvider.getSourceDecoder(), transformation, loadProvider.getEncoder(),
                transcoder, loadProvider.getSourceEncoder());

        ...
    }

    ...
}

 

可以看到,这里在第11行调用了fetcher.getId()方法获得了一个id字符串,这个字符串也就是我们要加载的图片的唯一标识,比如说如果是一张网络上的图片的话,那么这个id就是这张图片的url地址。

接下来在第12行,将这个id连同着signature、width、height等等10个参数一起传入到EngineKeyFactory的buildKey()方法当中,从而构建出了一个EngineKey对象,这个EngineKey也就是Glide中的缓存Key了。

可见,决定缓存Key的条件非常多,即使你用override()方法改变了一下图片的width或者height,也会生成一个完全不同的缓存Key。

EngineKey类的源码大家有兴趣可以自己去看一下,其实主要就是重写了equals()和hashCode()方法,保证只有传入EngineKey的所有参数都相同的情况下才认为是同一个EngineKey对象,我就不在这里将源码贴出来了。

内存缓存

有了缓存Key,接下来就可以开始进行缓存了,那么我们先从内存缓存看起。

首先你要知道,默认情况下,Glide自动就是开启内存缓存的。也就是说,当我们使用Glide加载了一张图片之后,这张图片就会被缓存到内存当中,只要在它还没从内存中被清除之前,下次使用Glide再加载这张图片都会直接从内存当中读取,而不用重新从网络或硬盘上读取了,这样无疑就可以大幅度提升图片的加载效率。比方说你在一个RecyclerView当中反复上下滑动,RecyclerView中只要是Glide加载过的图片都可以直接从内存当中迅速读取并展示出来,从而大大提升了用户体验。

而Glide*为人性化的是,你甚至不需要编写任何额外的代码就能自动享受到这个*为便利的内存缓存功能,因为Glide默认就已经将它开启了。

那么既然已经默认开启了这个功能,还有什么可讲的用法呢?只有一点,如果你有什么特殊的原因需要禁用内存缓存功能,Glide对此提供了接口:

Glide.with(this)
     .load(url)
     .skipMemoryCache(true)
     .into(imageView);

 

可以看到,只需要调用skipMemoryCache()方法并传入true,就表示禁用掉Glide的内存缓存功能。

没错,关于Glide内存缓存的用法就只有这么多,可以说是相当简单。但是我们不可能只停留在这么简单的层面上,接下来就让我们就通过阅读源码来分析一下Glide的内存缓存功能是如何实现的。

其实说到内存缓存的实现,非常容易就让人想到LruCache算法(Least Recently Used),也叫近期*少使用算法。它的主要算法原理就是把*近使用的对象用强引用存储在LinkedHashMap中,并且把*近*少使用的对象在缓存值达到预设定值之前从内存中移除。LruCache的用法也比较简单,我在 Android高效加载大图、多图解决方案,有效避免程序OOM 这篇文章当中有提到过它的用法,感兴趣的朋友可以去参考一下。

那么不必多说,Glide内存缓存的实现自然也是使用的LruCache算法。不过除了LruCache算法之外,Glide还结合了一种弱引用的机制,共同完成了内存缓存功能,下面就让我们来通过源码分析一下。

首先回忆一下,在上一篇文章的第二步load()方法中,我们当时分析到了在loadGeneric()方法中会调用Glide.buildStreamModelLoader()方法来获取一个ModelLoader对象。当时没有再跟进到这个方法的里面再去分析,那么我们现在来看下它的源码:

public class Glide {

    public static <T, Y> ModelLoader<T, Y> buildModelLoader(Class<T> modelClass, Class<Y> resourceClass,
            Context context) {
         if (modelClass == null) {
            if (Log.isLoggable(TAG, Log.DEBUG)) {
                Log.d(TAG, "Unable to load null model, setting placeholder only");
            }
            return null;
        }
        return Glide.get(context).getLoaderFactory().buildModelLoader(modelClass, resourceClass);
    }

    public static Glide get(Context context) {
        if (glide == null) {
            synchronized (Glide.class) {
                if (glide == null) {
                    Context applicationContext = context.getApplicationContext();
                    List<GlideModule> modules = new ManifestParser(applicationContext).parse();
                    GlideBuilder builder = new GlideBuilder(applicationContext);
                    for (GlideModule module : modules) {
                        module.applyOptions(applicationContext, builder);
                    }
                    glide = builder.createGlide();
                    for (GlideModule module : modules) {
                        module.registerComponents(applicationContext, glide);
                    }
                }
            }
        }
        return glide;
    }

    ...
}

 

这里我们还是只看关键,在第11行去构建ModelLoader对象的时候,先调用了一个Glide.get()方法,而这个方法就是关键。我们可以看到,get()方法中实现的是一个单例功能,而创建Glide对象则是在第24行调用GlideBuilder的createGlide()方法来创建的,那么我们跟到这个方法当中:

public class GlideBuilder {
    ...

    Glide createGlide() {
        if (sourceService == null) {
            final int cores = Math.max(1, Runtime.getRuntime().availableProcessors());
            sourceService = new FifoPriorityThreadPoolExecutor(cores);
        }
        if (diskCacheService == null) {
            diskCacheService = new FifoPriorityThreadPoolExecutor(1);
        }
        MemorySizeCalculator calculator = new MemorySizeCalculator(context);
        if (bitmapPool == null) {
            if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
                int size = calculator.getBitmapPoolSize();
                bitmapPool = new LruBitmapPool(size);
            } else {
                bitmapPool = new BitmapPoolAdapter();
            }
        }
        if (memoryCache == null) {
            memoryCache = new LruResourceCache(calculator.getMemoryCacheSize());
        }
        if (diskCacheFactory == null) {
            diskCacheFactory = new InternalCacheDiskCacheFactory(context);
        }
        if (engine == null) {
            engine = new Engine(memoryCache, diskCacheFactory, diskCacheService, sourceService);
        }
        if (decodeFormat == null) {
            decodeFormat = DecodeFormat.DEFAULT;
        }
        return new Glide(engine, memoryCache, bitmapPool, context, decodeFormat);
    }
}

 

这里也就是构建Glide对象的地方了。那么观察第22行,你会发现这里new出了一个LruResourceCache,并把它赋值到了memoryCache这个对象上面。你没有猜错,这个就是Glide实现内存缓存所使用的LruCache对象了。不过我这里并不打算展开来讲LruCache算法的具体实现,如果你感兴趣的话可以自己研究一下它的源码。

现在创建好了LruResourceCache对象只能说是把准备工作做好了,接下来我们就一步步研究Glide中的内存缓存到底是如何实现的。

刚才在Engine的load()方法中我们已经看到了生成缓存Key的代码,而内存缓存的代码其实也是在这里实现的,那么我们重新来看一下Engine类load()方法的完整源码:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {
    ...    

    public <T, Z, R> LoadStatus load(Key signature, int width, int height, DataFetcher<T> fetcher,
            DataLoadProvider<T, Z> loadProvider, Transformation<Z> transformation, ResourceTranscoder<Z, R> transcoder,
            Priority priority, boolean isMemoryCacheable, DiskCacheStrategy diskCacheStrategy, ResourceCallback cb) {
        Util.assertMainThread();
        long startTime = LogTime.getLogTime();

        final String id = fetcher.getId();
        EngineKey key = keyFactory.buildKey(id, signature, width, height, loadProvider.getCacheDecoder(),
                loadProvider.getSourceDecoder(), transformation, loadProvider.getEncoder(),
                transcoder, loadProvider.getSourceEncoder());

        EngineResource<?> cached = loadFromCache(key, isMemoryCacheable);
        if (cached != null) {
            cb.onResourceReady(cached);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Loaded resource from cache", startTime, key);
            }
            return null;
        }

        EngineResource<?> active = loadFromActiveResources(key, isMemoryCacheable);
        if (active != null) {
            cb.onResourceReady(active);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Loaded resource from active resources", startTime, key);
            }
            return null;
        }

        EngineJob current = jobs.get(key);
        if (current != null) {
            current.addCallback(cb);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Added to existing load", startTime, key);
            }
            return new LoadStatus(cb, current);
        }

        EngineJob engineJob = engineJobFactory.build(key, isMemoryCacheable);
        DecodeJob<T, Z, R> decodeJob = new DecodeJob<T, Z, R>(key, width, height, fetcher, loadProvider, transformation,
                transcoder, diskCacheProvider, diskCacheStrategy, priority);
        EngineRunnable runnable = new EngineRunnable(engineJob, decodeJob, priority);
        jobs.put(key, engineJob);
        engineJob.addCallback(cb);
        engineJob.start(runnable);

        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logWithTimeAndKey("Started new load", startTime, key);
        }
        return new LoadStatus(cb, engineJob);
    }

    ...
}

 

可以看到,这里在第17行调用了loadFromCache()方法来获取缓存图片,如果获取到就直接调用cb.onResourceReady()方法进行回调。如果没有获取到,则会在第26行调用loadFromActiveResources()方法来获取缓存图片,获取到的话也直接进行回调。只有在两个方法都没有获取到缓存的情况下,才会继续向下执行,从而开启线程来加载图片。

也就是说,Glide的图片加载过程中会调用两个方法来获取内存缓存,loadFromCache()和loadFromActiveResources()。这两个方法中一个使用的就是LruCache算法,另一个使用的就是弱引用。我们来看一下它们的源码:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {

    private final MemoryCache cache;
    private final Map<Key, WeakReference<EngineResource<?>>> activeResources;
    ...

    private EngineResource<?> loadFromCache(Key key, boolean isMemoryCacheable) {
        if (!isMemoryCacheable) {
            return null;
        }
        EngineResource<?> cached = getEngineResourceFromCache(key);
        if (cached != null) {
            cached.acquire();
            activeResources.put(key, new ResourceWeakReference(key, cached, getReferenceQueue()));
        }
        return cached;
    }

    private EngineResource<?> getEngineResourceFromCache(Key key) {
        Resource<?> cached = cache.remove(key);
        final EngineResource result;
        if (cached == null) {
            result = null;
        } else if (cached instanceof EngineResource) {
            result = (EngineResource) cached;
        } else {
            result = new EngineResource(cached, true /*isCacheable*/);
        }
        return result;
    }

    private EngineResource<?> loadFromActiveResources(Key key, boolean isMemoryCacheable) {
        if (!isMemoryCacheable) {
            return null;
        }
        EngineResource<?> active = null;
        WeakReference<EngineResource<?>> activeRef = activeResources.get(key);
        if (activeRef != null) {
            active = activeRef.get();
            if (active != null) {
                active.acquire();
            } else {
                activeResources.remove(key);
            }
        }
        return active;
    }

    ...
}

 

在loadFromCache()方法的一开始,首先就判断了isMemoryCacheable是不是false,如果是false的话就直接返回null。这是什么意思呢?其实很简单,我们刚刚不是学了一个skipMemoryCache()方法吗?如果在这个方法中传入true,那么这里的isMemoryCacheable就会是false,表示内存缓存已被禁用。

我们继续住下看,接着调用了getEngineResourceFromCache()方法来获取缓存。在这个方法中,会使用缓存Key来从cache当中取值,而这里的cache对象就是在构建Glide对象时创建的LruResourceCache,那么说明这里其实使用的就是LruCache算法了。

但是呢,观察第22行,当我们从LruResourceCache中获取到缓存图片之后会将它从缓存中移除,然后在第16行将这个缓存图片存储到activeResources当中。activeResources就是一个弱引用的HashMap,用来缓存正在使用中的图片,我们可以看到,loadFromActiveResources()方法就是从activeResources这个HashMap当中取值的。使用activeResources来缓存正在使用中的图片,可以保护这些图片不会被LruCache算法回收掉。

好的,从内存缓存中读取数据的逻辑大概就是这些了。概括一下来说,就是如果能从内存缓存当中读取到要加载的图片,那么就直接进行回调,如果读取不到的话,才会开启线程执行后面的图片加载逻辑。

现在我们已经搞明白了内存缓存读取的原理,接下来的问题就是内存缓存是在哪里写入的呢?这里我们又要回顾一下上一篇文章中的内容了。还记不记得我们之前分析过,当图片加载完成之后,会在EngineJob当中通过Handler发送一条消息将执行逻辑切回到主线程当中,从而执行handleResultOnMainThread()方法。那么我们现在重新来看一下这个方法,代码如下所示:

class EngineJob implements EngineRunnable.EngineRunnableManager {

    private final EngineResourceFactory engineResourceFactory;
    ...

    private void handleResultOnMainThread() {
        if (isCancelled) {
            resource.recycle();
            return;
        } else if (cbs.isEmpty()) {
            throw new IllegalStateException("Received a resource without any callbacks to notify");
        }
        engineResource = engineResourceFactory.build(resource, isCacheable);
        hasResource = true;
        engineResource.acquire();
        listener.onEngineJobComplete(key, engineResource);
        for (ResourceCallback cb : cbs) {
            if (!isInIgnoredCallbacks(cb)) {
                engineResource.acquire();
                cb.onResourceReady(engineResource);
            }
        }
        engineResource.release();
    }

    static class EngineResourceFactory {
        public <R> EngineResource<R> build(Resource<R> resource, boolean isMemoryCacheable) {
            return new EngineResource<R>(resource, isMemoryCacheable);
        }
    }
    ...
}

 

在第13行,这里通过EngineResourceFactory构建出了一个包含图片资源的EngineResource对象,然后会在第16行将这个对象回调到Engine的onEngineJobComplete()方法当中,如下所示:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {
    ...    

    @Override
    public void onEngineJobComplete(Key key, EngineResource<?> resource) {
        Util.assertMainThread();
        // A null resource indicates that the load failed, usually due to an exception.
        if (resource != null) {
            resource.setResourceListener(key, this);
            if (resource.isCacheable()) {
                activeResources.put(key, new ResourceWeakReference(key, resource, getReferenceQueue()));
            }
        }
        jobs.remove(key);
    }

    ...
}

现在就非常明显了,可以看到,在第13行,回调过来的EngineResource被put到了activeResources当中,也就是在这里写入的缓存。

那么这只是弱引用缓存,还有另外一种LruCache缓存是在哪里写入的呢?这就要介绍一下EngineResource中的一个引用机制了。观察刚才的handleResultOnMainThread()方法,在第15行和第19行有调用EngineResource的acquire()方法,在第23行有调用它的release()方法。其实,EngineResource是用一个acquired变量用来记录图片被引用的次数,调用acquire()方法会让变量加1,调用release()方法会让变量减1,代码如下所示:

class EngineResource<Z> implements Resource<Z> {

    private int acquired;
    ...

    void acquire() {
        if (isRecycled) {
            throw new IllegalStateException("Cannot acquire a recycled resource");
        }
        if (!Looper.getMainLooper().equals(Looper.myLooper())) {
            throw new IllegalThreadStateException("Must call acquire on the main thread");
        }
        ++acquired;
    }

    void release() {
        if (acquired <= 0) {
            throw new IllegalStateException("Cannot release a recycled or not yet acquired resource");
        }
        if (!Looper.getMainLooper().equals(Looper.myLooper())) {
            throw new IllegalThreadStateException("Must call release on the main thread");
        }
        if (--acquired == 0) {
            listener.onResourceReleased(key, this);
        }
    }
}

 

也就是说,当acquired变量大于0的时候,说明图片正在使用中,也就应该放到activeResources弱引用缓存当中。而经过release()之后,如果acquired变量等于0了,说明图片已经不再被使用了,那么此时会在第24行调用listener的onResourceReleased()方法来释放资源,这个listener就是Engine对象,我们来看下它的onResourceReleased()方法:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {

    private final MemoryCache cache;
    private final Map<Key, WeakReference<EngineResource<?>>> activeResources;
    ...    

    @Override
    public void onResourceReleased(Key cacheKey, EngineResource resource) {
        Util.assertMainThread();
        activeResources.remove(cacheKey);
        if (resource.isCacheable()) {
            cache.put(cacheKey, resource);
        } else {
            resourceRecycler.recycle(resource);
        }
    }

    ...
}

 

可以看到,这里首先会将缓存图片从activeResources中移除,然后再将它put到LruResourceCache当中。这样也就实现了正在使用中的图片使用弱引用来进行缓存,不在使用中的图片使用LruCache来进行缓存的功能。

这就是Glide内存缓存的实现原理。

硬盘缓存

接下来我们开始学习硬盘缓存方面的内容。

不知道你还记不记得,在本系列的*篇文章中我们就使用过硬盘缓存的功能了。当时为了禁止Glide对图片进行硬盘缓存而使用了如下代码:

Glide.with(this)
     .load(url)
     .diskCacheStrategy(DiskCacheStrategy.NONE)
     .into(imageView);

 

调用diskCacheStrategy()方法并传入DiskCacheStrategy.NONE,就可以禁用掉Glide的硬盘缓存功能了。

这个diskCacheStrategy()方法基本上就是Glide硬盘缓存功能的一切,它可以接收四种参数:

  • DiskCacheStrategy.NONE: 表示不缓存任何内容。
  • DiskCacheStrategy.SOURCE: 表示只缓存原始图片。
  • DiskCacheStrategy.RESULT: 表示只缓存转换过后的图片(默认选项)。
  • DiskCacheStrategy.ALL : 表示既缓存原始图片,也缓存转换过后的图片。

上面四种参数的解释本身并没有什么难理解的地方,但是有一个概念大家需要了解,就是当我们使用Glide去加载一张图片的时候,Glide默认并不会将原始图片展示出来,而是会对图片进行压缩和转换(我们会在后面学习这方面的内容)。总之就是经过种种一系列操作之后得到的图片,就叫转换过后的图片。而Glide默认情况下在硬盘缓存的就是转换过后的图片,我们通过调用diskCacheStrategy()方法则可以改变这一默认行为。

好的,关于Glide硬盘缓存的用法也就只有这么多,那么接下来还是老套路,我们通过阅读源码来分析一下,Glide的硬盘缓存功能是如何实现的。

首先,和内存缓存类似,硬盘缓存的实现也是使用的LruCache算法,而且Google还提供了一个现成的工具类DiskLruCache。我之前也专门写过一篇文章对这个DiskLruCache工具进行了比较全面的分析,感兴趣的朋友可以参考一下 Android DiskLruCache完全解析,硬盘缓存的*佳方案 。当然,Glide是使用的自己编写的DiskLruCache工具类,但是基本的实现原理都是差不多的。

接下来我们看一下Glide是在哪里读取硬盘缓存的。这里又需要回忆一下上篇文章中的内容了,Glide开启线程来加载图片后会执行EngineRunnable的run()方法,run()方法中又会调用一个decode()方法,那么我们重新再来看一下这个decode()方法的源码:

private Resource<?> decode() throws Exception {
    if (isDecodingFromCache()) {
        return decodeFromCache();
    } else {
        return decodeFromSource();
    }
}

 

可以看到,这里会分为两种情况,一种是调用decodeFromCache()方法从硬盘缓存当中读取图片,一种是调用decodeFromSource()来读取原始图片。默认情况下Glide会优先从缓存当中读取,只有缓存中不存在要读取的图片时,才会去读取原始图片。那么我们现在来看一下decodeFromCache()方法的源码,如下所示:

private Resource<?> decodeFromCache() throws Exception {
    Resource<?> result = null;
    try {
        result = decodeJob.decodeResultFromCache();
    } catch (Exception e) {
        if (Log.isLoggable(TAG, Log.DEBUG)) {
            Log.d(TAG, "Exception decoding result from cache: " + e);
        }
    }
    if (result == null) {
        result = decodeJob.decodeSourceFromCache();
    }
    return result;
}

 

可以看到,这里会先去调用DecodeJob的decodeResultFromCache()方法来获取缓存,如果获取不到,会再调用decodeSourceFromCache()方法获取缓存,这两个方法的区别其实就是DiskCacheStrategy.RESULT和DiskCacheStrategy.SOURCE这两个参数的区别,相信不需要我再做什么解释吧。

那么我们来看一下这两个方法的源码吧,如下所示:

public Resource<Z> decodeResultFromCache() throws Exception {
    if (!diskCacheStrategy.cacheResult()) {
        return null;
    }
    long startTime = LogTime.getLogTime();
    Resource<T> transformed = loadFromCache(resultKey);
    startTime = LogTime.getLogTime();
    Resource<Z> result = transcode(transformed);
    return result;
}

public Resource<Z> decodeSourceFromCache() throws Exception {
    if (!diskCacheStrategy.cacheSource()) {
        return null;
    }
    long startTime = LogTime.getLogTime();
    Resource<T> decoded = loadFromCache(resultKey.getOriginalKey());
    return transformEncodeAndTranscode(decoded);
}

 

可以看到,它们都是调用了loadFromCache()方法从缓存当中读取数据,如果是decodeResultFromCache()方法就直接将数据解码并返回,如果是decodeSourceFromCache()方法,还要调用一下transformEncodeAndTranscode()方法先将数据转换一下再解码并返回。

然而我们注意到,这两个方法中在调用loadFromCache()方法时传入的参数却不一样,一个传入的是resultKey,另外一个却又调用了resultKey的getOriginalKey()方法。这个其实非常好理解,刚才我们已经解释过了,Glide的缓存Key是由10个参数共同组成的,包括图片的width、height等等。但如果我们是缓存的原始图片,其实并不需要这么多的参数,因为不用对图片做任何的变化。那么我们来看一下getOriginalKey()方法的源码:

public Key getOriginalKey() {
    if (originalKey == null) {
        originalKey = new OriginalKey(id, signature);
    }
    return originalKey;
}

 

可以看到,这里其实就是忽略了*大部分的参数,只使用了id和signature这两个参数来构成缓存Key。而signature参数*大多数情况下都是用不到的,因此基本上可以说就是由id(也就是图片url)来决定的Original缓存Key。

搞明白了这两种缓存Key的区别,那么接下来我们看一下loadFromCache()方法的源码吧:

private Resource<T> loadFromCache(Key key) throws IOException {
    File cacheFile = diskCacheProvider.getDiskCache().get(key);
    if (cacheFile == null) {
        return null;
    }
    Resource<T> result = null;
    try {
        result = loadProvider.getCacheDecoder().decode(cacheFile, width, height);
    } finally {
        if (result == null) {
            diskCacheProvider.getDiskCache().delete(key);
        }
    }
    return result;
}

 

这个方法的逻辑非常简单,调用getDiskCache()方法获取到的就是Glide自己编写的DiskLruCache工具类的实例,然后调用它的get()方法并把缓存Key传入,就能得到硬盘缓存的文件了。如果文件为空就返回null,如果文件不为空则将它解码成Resource对象后返回即可。

这样我们就将硬盘缓存读取的源码分析完了,那么硬盘缓存又是在哪里写入的呢?趁热打铁我们赶快继续分析下去。

刚才已经分析过了,在没有缓存的情况下,会调用decodeFromSource()方法来读取原始图片。那么我们来看下这个方法:

public Resource<Z> decodeFromSource() throws Exception {
    Resource<T> decoded = decodeSource();
    return transformEncodeAndTranscode(decoded);
}

 

这个方法中只有两行代码,decodeSource()顾名思义是用来解析原图片的,而transformEncodeAndTranscode()则是用来对图片进行转换和转码的。我们先来看decodeSource()方法:

private Resource<T> decodeSource() throws Exception {
    Resource<T> decoded = null;
    try {
        long startTime = LogTime.getLogTime();
        final A data = fetcher.loadData(priority);
        if (isCancelled) {
            return null;
        }
        decoded = decodeFromSourceData(data);
    } finally {
        fetcher.cleanup();
    }
    return decoded;
}

private Resource<T> decodeFromSourceData(A data) throws IOException {
    final Resource<T> decoded;
    if (diskCacheStrategy.cacheSource()) {
        decoded = cacheAndDecodeSourceData(data);
    } else {
        long startTime = LogTime.getLogTime();
        decoded = loadProvider.getSourceDecoder().decode(data, width, height);
    }
    return decoded;
}

private Resource<T> cacheAndDecodeSourceData(A data) throws IOException {
    long startTime = LogTime.getLogTime();
    SourceWriter<A> writer = new SourceWriter<A>(loadProvider.getSourceEncoder(), data);
    diskCacheProvider.getDiskCache().put(resultKey.getOriginalKey(), writer);
    startTime = LogTime.getLogTime();
    Resource<T> result = loadFromCache(resultKey.getOriginalKey());
    return result;
}

 

这里会在第5行先调用fetcher的loadData()方法读取图片数据,然后在第9行调用decodeFromSourceData()方法来对图片进行解码。接下来会在第18行先判断是否允许缓存原始图片,如果允许的话又会调用cacheAndDecodeSourceData()方法。而在这个方法中同样调用了getDiskCache()方法来获取DiskLruCache实例,接着调用它的put()方法就可以写入硬盘缓存了,注意原始图片的缓存Key是用的resultKey.getOriginalKey()。

好的,原始图片的缓存写入就是这么简单,接下来我们分析一下transformEncodeAndTranscode()方法的源码,来看看转换过后的图片缓存是怎么写入的。代码如下所示:

private Resource<Z> transformEncodeAndTranscode(Resource<T> decoded) {
    long startTime = LogTime.getLogTime();
    Resource<T> transformed = transform(decoded);
    writeTransformedToCache(transformed);
    startTime = LogTime.getLogTime();
    Resource<Z> result = transcode(transformed);
    return result;
}

private void writeTransformedToCache(Resource<T> transformed) {
    if (transformed == null || !diskCacheStrategy.cacheResult()) {
        return;
    }
    long startTime = LogTime.getLogTime();
    SourceWriter<Resource<T>> writer = new SourceWriter<Resource<T>>(loadProvider.getEncoder(), transformed);
    diskCacheProvider.getDiskCache().put(resultKey, writer);
}

 

这里的逻辑就更加简单明了了。先是在第3行调用transform()方法来对图片进行转换,然后在writeTransformedToCache()方法中将转换过后的图片写入到硬盘缓存中,调用的同样是DiskLruCache实例的put()方法,不过这里用的缓存Key是resultKey。

这样我们就将Glide硬盘缓存的实现原理也分析完了。虽然这些源码看上去如此的复杂,但是经过Glide出色的封装,使得我们只需要通过skipMemoryCache()和diskCacheStrategy()这两个方法就可以轻松自如地控制Glide的缓存功能了。

了解了Glide缓存的实现原理之后,接下来我们再来学习一些Glide缓存的高级技巧吧。

高级技巧

虽说Glide将缓存功能高度封装之后,使得用法变得非常简单,但同时也带来了一些问题。

比如之前有一位群里的朋友就跟我说过,他们项目的图片资源都是存放在七牛云上面的,而七牛云为了对图片资源进行保护,会在图片url地址的基础之上再加上一个token参数。也就是说,一张图片的url地址可能会是如下格式:

http://url.com/image.jpg?token=d9caa6e02c990b0a

 

而使用Glide加载这张图片的话,也就会使用这个url地址来组成缓存Key。

但是接下来问题就来了,token作为一个验证身份的参数并不是一成不变的,很有可能时时刻刻都在变化。而如果token变了,那么图片的url也就跟着变了,图片url变了,缓存Key也就跟着变了。结果就造成了,明明是同一张图片,就因为token不断在改变,导致Glide的缓存功能完全失效了。

这其实是个挺棘手的问题,而且我相信*对不仅仅是七牛云这一个个例,大家在使用Glide的时候很有可能都会遇到这个问题。

那么该如何解决这个问题呢?我们还是从源码的层面进行分析,首先再来看一下Glide生成缓存Key这部分的代码:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {

    public <T, Z, R> LoadStatus load(Key signature, int width, int height, DataFetcher<T> fetcher,
            DataLoadProvider<T, Z> loadProvider, Transformation<Z> transformation, ResourceTranscoder<Z, R> transcoder,
            Priority priority, boolean isMemoryCacheable, DiskCacheStrategy diskCacheStrategy, ResourceCallback cb) {
        Util.assertMainThread();
        long startTime = LogTime.getLogTime();

        final String id = fetcher.getId();
        EngineKey key = keyFactory.buildKey(id, signature, width, height, loadProvider.getCacheDecoder(),
                loadProvider.getSourceDecoder(), transformation, loadProvider.getEncoder(),
                transcoder, loadProvider.getSourceEncoder());

        ...
    }

    ...
}

 

来看一下第11行,刚才已经说过了,这个id其实就是图片的url地址。那么,这里是通过调用fetcher.getId()方法来获取的图片url地址,而我们在上一篇文章中已经知道了,fetcher就是HttpUrlFetcher的实例,我们就来看一下它的getId()方法的源码吧,如下所示:

public class HttpUrlFetcher implements DataFetcher<InputStream> {

    private final GlideUrl glideUrl;
    ...

    public HttpUrlFetcher(GlideUrl glideUrl) {
        this(glideUrl, DEFAULT_CONNECTION_FACTORY);
    }

    HttpUrlFetcher(GlideUrl glideUrl, HttpUrlConnectionFactory connectionFactory) {
        this.glideUrl = glideUrl;
        this.connectionFactory = connectionFactory;
    }

    @Override
    public String getId() {
        return glideUrl.getCacheKey();
    }

    ...
}

 

可以看到,getId()方法中又调用了GlideUrl的getCacheKey()方法。那么这个GlideUrl对象是从哪里来的呢?其实就是我们在load()方法中传入的图片url地址,然后Glide在内部把这个url地址包装成了一个GlideUrl对象。

很明显,接下来我们就要看一下GlideUrl的getCacheKey()方法的源码了,如下所示:

public class GlideUrl {

    private final URL url;
    private final String stringUrl;
    ...

    public GlideUrl(URL url) {
        this(url, Headers.DEFAULT);
    }

    public GlideUrl(String url) {
        this(url, Headers.DEFAULT);
    }

    public GlideUrl(URL url, Headers headers) {
        ...
        this.url = url;
        stringUrl = null;
    }

    public GlideUrl(String url, Headers headers) {
        ...
        this.stringUrl = url;
        this.url = null;
    }

    public String getCacheKey() {
        return stringUrl != null ? stringUrl : url.toString();
    }

    ...
}

 

这里我将代码稍微进行了一点简化,这样看上去更加简单明了。GlideUrl类的构造函数接收两种类型的参数,一种是url字符串,一种是URL对象。然后getCacheKey()方法中的判断逻辑非常简单,如果传入的是url字符串,那么就直接返回这个字符串本身,如果传入的是URL对象,那么就返回这个对象toString()后的结果。

其实看到这里,我相信大家已经猜到解决方案了,因为getCacheKey()方法中的逻辑太直白了,直接就是将图片的url地址进行返回来作为缓存Key的。那么其实我们只需要重写这个getCacheKey()方法,加入一些自己的逻辑判断,就能轻松解决掉刚才的问题了。

创建一个MyGlideUrl继承自GlideUrl,代码如下所示:

public class MyGlideUrl extends GlideUrl {

    private String mUrl;

    public MyGlideUrl(String url) {
        super(url);
        mUrl = url;
    }

    @Override
    public String getCacheKey() {
        return mUrl.replace(findTokenParam(), "");
    }

    private String findTokenParam() {
        String tokenParam = "";
        int tokenKeyIndex = mUrl.indexOf("?token=") >= 0 ? mUrl.indexOf("?token=") : mUrl.indexOf("&token=");
        if (tokenKeyIndex != -1) {
            int nextAndIndex = mUrl.indexOf("&", tokenKeyIndex + 1);
            if (nextAndIndex != -1) {
                tokenParam = mUrl.substring(tokenKeyIndex + 1, nextAndIndex + 1);
            } else {
                tokenParam = mUrl.substring(tokenKeyIndex);
            }
        }
        return tokenParam;
    }

}

 

可以看到,这里我们重写了getCacheKey()方法,在里面加入了一段逻辑用于将图片url地址中token参数的这一部分移除掉。这样getCacheKey()方法得到的就是一个没有token参数的url地址,从而不管token怎么变化,*终Glide的缓存Key都是固定不变的了。

当然,定义好了MyGlideUrl,我们还得使用它才行,将加载图片的代码改成如下方式即可:

Glide.with(this)
     .load(new MyGlideUrl(url))
     .into(imageView);

 

也就是说,我们需要在load()方法中传入这个自定义的MyGlideUrl对象,而不能再像之前那样直接传入url字符串了。不然的话Glide在内部还是会使用原始的GlideUrl类,而不是我们自定义的MyGlideUrl类。

这样我们就将这个棘手的缓存问题给解决掉了。

好了,关于Glide缓存方面的内容今天就分析到这里,现在我们不光掌握了Glide缓存的基本用法和高级技巧,还了解了它背后的实现原理,又是收获满满的一篇文章啊。下一篇文章当中,我会继续带着大家深入分析Glide的其他功能模块,讲一讲回调方面的知识,感兴趣的朋友请继续阅读 Android图片加载框架*全解析(四),玩转Glide的回调与监听 。

Android图片加载框架*全解析(二)从源码的角度理解Glide的执行流程

在本系列的上一篇文章中,我们学习了Glide的基本用法,体验了这个图片加载框架的强大功能,以及它非常简便的API。还没有看过上一篇文章的朋友,建议先去阅读 Android图片加载框架*全解析(一),Glide的基本用法 。

在多数情况下,我们想要在界面上加载并展示一张图片只需要一行代码就能实现,如下所示:

Glide.with(this).load(url).into(imageView);

虽说只有这简简单单的一行代码,但大家可能不知道的是,Glide在背后帮我们默默执行了成吨的工作。这个形容词我想了很久,因为我觉得用非常多这个形容词不足以描述Glide背后的工作量,我查到的英文资料是用tons of work来进行形容的,因此我觉得这里使用成吨来形容更加贴切一些。

虽说我们在平时使用Glide的时候格外地简单和方便,但是知其然也要知其所以然。那么今天我们就来解析一下Glide的源码,看看它在这些简单用法的背后,到底执行了多么复杂的工作。

如何阅读源码

在开始解析Glide源码之前,我想先和大家谈一下该如何阅读源码,这个问题也是我平时被问得比较多的,因为很多人都觉得阅读源码是一件比较困难的事情。

那么阅读源码到底困难吗?这个当然主要还是要视具体的源码而定。比如同样是图片加载框架,我读Volley的源码时就感觉酣畅淋漓,并且对Volley的架构设计和代码质量深感佩服。读Glide的源码时却让我相当痛苦,代码*其难懂。当然这里我并不是说Glide的代码写得不好,只是因为Glide和复杂程度和Volley完全不是在一个量级上的。

那么,虽然源码的复杂程度是外在的不可变条件,但我们却可以通过一些技巧来提升自己阅读源码的能力。这里我和大家分享一下我平时阅读源码时所使用的技巧,简单概括就是八个字:抽丝剥茧、点到即止。应该认准一个功能点,然后去分析这个功能点是如何实现的。但只要去追寻主体的实现逻辑即可,千万不要试图去搞懂每一行代码都是什么意思,那样很容易会陷入到思维黑洞当中,而且越陷越深。因为这些庞大的系统都不是由一个人写出来的,每一行代码都想搞明白,就会感觉自己是在盲人摸象,永远也研究不透。如果只是去分析主体的实现逻辑,那么就有比较明确的目的性,这样阅读源码会更加轻松,也更加有成效。

而今天带大家阅读的Glide源码就非常适合使用这个技巧,因为Glide的源码太复杂了,千万不要试图去搞明白它每行代码的作用,而是应该只分析它的主体实现逻辑。那么我们本篇文章就先确立好一个目标,就是要通过阅读源码搞明白下面这行代码:

Glide.with(this).load(url).into(imageView);

到底是如何实现将一张网络图片展示到ImageView上面的。先将Glide的一整套图片加载机制的基本流程梳理清楚,然后我们再通过后面的几篇文章具体去了解Glide源码方方面面的细节。

准备好了吗?那么我们现在开始。

源码下载

既然是要阅读Glide的源码,那么我们自然需要先将Glide的源码下载下来。其实如果你是使用在build.gradle中添加依赖的方式将Glide引入到项目中的,那么源码自动就已经下载下来了,在Android Studio中就可以直接进行查看。

不过,使用添加依赖的方式引入的Glide,我们只能看到它的源码,但不能做任何的修改,如果你还需要修改它的源码的话,可以到GitHub上面将它的完整源码下载下来。

Glide的GitHub主页的地址是:https://github.com/bumptech/glide

不过在这个地址下载到的永远都是*新的源码,有可能还正在处于开发当中。而我们整个系列都是使用Glide 3.7.0这个版本来进行讲解的,因此如果你需要专门去下载3.7.0版本的源码,可以到这个地址进行下载:https://github.com/bumptech/glide/tree/v3.7.0

开始阅读

我们在上一篇文章中已经学习过了,Glide*基本的用法就是三步走:先with(),再load(),*后into()。那么我们开始一步步阅读这三步走的源码,先从with()看起。

1. with()

with()方法是Glide类中的一组静态方法,它有好几个方法重载,我们来看一下Glide类中所有with()方法的方法重载:

public class Glide {

    ...

    public static RequestManager with(Context context) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(context);
    }

    public static RequestManager with(Activity activity) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(activity);
    }

    public static RequestManager with(FragmentActivity activity) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(activity);
    }

    @TargetApi(Build.VERSION_CODES.HONEYCOMB)
    public static RequestManager with(android.app.Fragment fragment) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(fragment);
    }

    public static RequestManager with(Fragment fragment) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(fragment);
    }
}

 

可以看到,with()方法的重载种类非常多,既可以传入Activity,也可以传入Fragment或者是Context。每一个with()方法重载的代码都非常简单,都是先调用RequestManagerRetriever的静态get()方法得到一个RequestManagerRetriever对象,这个静态get()方法就是一个单例实现,没什么需要解释的。然后再调用RequestManagerRetriever的实例get()方法,去获取RequestManager对象。

而RequestManagerRetriever的实例get()方法中的逻辑是什么样的呢?我们一起来看一看:

public class RequestManagerRetriever implements Handler.Callback {

    private static final RequestManagerRetriever INSTANCE = new RequestManagerRetriever();

    private volatile RequestManager applicationManager;

    ...

    /**
     * Retrieves and returns the RequestManagerRetriever singleton.
     */
    public static RequestManagerRetriever get() {
        return INSTANCE;
    }

    private RequestManager getApplicationManager(Context context) {
        // Either an application context or we're on a background thread.
        if (applicationManager == null) {
            synchronized (this) {
                if (applicationManager == null) {
                    // Normally pause/resume is taken care of by the fragment we add to the fragment or activity.
                    // However, in this case since the manager attached to the application will not receive lifecycle
                    // events, we must force the manager to start resumed using ApplicationLifecycle.
                    applicationManager = new RequestManager(context.getApplicationContext(),
                            new ApplicationLifecycle(), new EmptyRequestManagerTreeNode());
                }
            }
        }
        return applicationManager;
    }

    public RequestManager get(Context context) {
        if (context == null) {
            throw new IllegalArgumentException("You cannot start a load on a null Context");
        } else if (Util.isOnMainThread() && !(context instanceof Application)) {
            if (context instanceof FragmentActivity) {
                return get((FragmentActivity) context);
            } else if (context instanceof Activity) {
                return get((Activity) context);
            } else if (context instanceof ContextWrapper) {
                return get(((ContextWrapper) context).getBaseContext());
            }
        }
        return getApplicationManager(context);
    }

    public RequestManager get(FragmentActivity activity) {
        if (Util.isOnBackgroundThread()) {
            return get(activity.getApplicationContext());
        } else {
            assertNotDestroyed(activity);
            FragmentManager fm = activity.getSupportFragmentManager();
            return supportFragmentGet(activity, fm);
        }
    }

    public RequestManager get(Fragment fragment) {
        if (fragment.getActivity() == null) {
            throw new IllegalArgumentException("You cannot start a load on a fragment before it is attached");
        }
        if (Util.isOnBackgroundThread()) {
            return get(fragment.getActivity().getApplicationContext());
        } else {
            FragmentManager fm = fragment.getChildFragmentManager();
            return supportFragmentGet(fragment.getActivity(), fm);
        }
    }

    @TargetApi(Build.VERSION_CODES.HONEYCOMB)
    public RequestManager get(Activity activity) {
        if (Util.isOnBackgroundThread() || Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB) {
            return get(activity.getApplicationContext());
        } else {
            assertNotDestroyed(activity);
            android.app.FragmentManager fm = activity.getFragmentManager();
            return fragmentGet(activity, fm);
        }
    }

    @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
    private static void assertNotDestroyed(Activity activity) {
        if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1 && activity.isDestroyed()) {
            throw new IllegalArgumentException("You cannot start a load for a destroyed activity");
        }
    }

    @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
    public RequestManager get(android.app.Fragment fragment) {
        if (fragment.getActivity() == null) {
            throw new IllegalArgumentException("You cannot start a load on a fragment before it is attached");
        }
        if (Util.isOnBackgroundThread() || Build.VERSION.SDK_INT < Build.VERSION_CODES.JELLY_BEAN_MR1) {
            return get(fragment.getActivity().getApplicationContext());
        } else {
            android.app.FragmentManager fm = fragment.getChildFragmentManager();
            return fragmentGet(fragment.getActivity(), fm);
        }
    }

    @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
    RequestManagerFragment getRequestManagerFragment(final android.app.FragmentManager fm) {
        RequestManagerFragment current = (RequestManagerFragment) fm.findFragmentByTag(FRAGMENT_TAG);
        if (current == null) {
            current = pendingRequestManagerFragments.get(fm);
            if (current == null) {
                current = new RequestManagerFragment();
                pendingRequestManagerFragments.put(fm, current);
                fm.beginTransaction().add(current, FRAGMENT_TAG).commitAllowingStateLoss();
                handler.obtainMessage(ID_REMOVE_FRAGMENT_MANAGER, fm).sendToTarget();
            }
        }
        return current;
    }

    @TargetApi(Build.VERSION_CODES.HONEYCOMB)
    RequestManager fragmentGet(Context context, android.app.FragmentManager fm) {
        RequestManagerFragment current = getRequestManagerFragment(fm);
        RequestManager requestManager = current.getRequestManager();
        if (requestManager == null) {
            requestManager = new RequestManager(context, current.getLifecycle(), current.getRequestManagerTreeNode());
            current.setRequestManager(requestManager);
        }
        return requestManager;
    }

    SupportRequestManagerFragment getSupportRequestManagerFragment(final FragmentManager fm) {
        SupportRequestManagerFragment current = (SupportRequestManagerFragment) fm.findFragmentByTag(FRAGMENT_TAG);
        if (current == null) {
            current = pendingSupportRequestManagerFragments.get(fm);
            if (current == null) {
                current = new SupportRequestManagerFragment();
                pendingSupportRequestManagerFragments.put(fm, current);
                fm.beginTransaction().add(current, FRAGMENT_TAG).commitAllowingStateLoss();
                handler.obtainMessage(ID_REMOVE_SUPPORT_FRAGMENT_MANAGER, fm).sendToTarget();
            }
        }
        return current;
    }

    RequestManager supportFragmentGet(Context context, FragmentManager fm) {
        SupportRequestManagerFragment current = getSupportRequestManagerFragment(fm);
        RequestManager requestManager = current.getRequestManager();
        if (requestManager == null) {
            requestManager = new RequestManager(context, current.getLifecycle(), current.getRequestManagerTreeNode());
            current.setRequestManager(requestManager);
        }
        return requestManager;
    }

    ...
}

 

上述代码虽然看上去逻辑有点复杂,但是将它们梳理清楚后还是很简单的。RequestManagerRetriever类中看似有很多个get()方法的重载,什么Context参数,Activity参数,Fragment参数等等,实际上只有两种情况而已,即传入Application类型的参数,和传入非Application类型的参数。

我们先来看传入Application参数的情况。如果在Glide.with()方法中传入的是一个Application对象,那么这里就会调用带有Context参数的get()方法重载,然后会在第44行调用getApplicationManager()方法来获取一个RequestManager对象。其实这是*简单的一种情况,因为Application对象的生命周期即应用程序的生命周期,因此Glide并不需要做什么特殊的处理,它自动就是和应用程序的生命周期是同步的,如果应用程序关闭的话,Glide的加载也会同时终止。

接下来我们看传入非Application参数的情况。不管你在Glide.with()方法中传入的是Activity、FragmentActivity、v4包下的Fragment、还是app包下的Fragment,*终的流程都是一样的,那就是会向当前的Activity当中添加一个隐藏的Fragment。具体添加的逻辑是在上述代码的第117行和第141行,分别对应的app包和v4包下的两种Fragment的情况。那么这里为什么要添加一个隐藏的Fragment呢?因为Glide需要知道加载的生命周期。很简单的一个道理,如果你在某个Activity上正在加载着一张图片,结果图片还没加载出来,Activity就被用户关掉了,那么图片还应该继续加载吗?当然不应该。可是Glide并没有办法知道Activity的生命周期,于是Glide就使用了添加隐藏Fragment的这种小技巧,因为Fragment的生命周期和Activity是同步的,如果Activity被销毁了,Fragment是可以监听到的,这样Glide就可以捕获这个事件并停止图片加载了。

这里额外再提一句,从第48行代码可以看出,如果我们是在非主线程当中使用的Glide,那么不管你是传入的Activity还是Fragment,都会被强制当成Application来处理。不过其实这就属于是在分析代码的细节了,本篇文章我们将会把目光主要放在Glide的主线工作流程上面,后面不会过多去分析这些细节方面的内容。

总体来说,*个with()方法的源码还是比较好理解的。其实就是为了得到一个RequestManager对象而已,然后Glide会根据我们传入with()方法的参数来确定图片加载的生命周期,并没有什么特别复杂的逻辑。不过复杂的逻辑还在后面等着我们呢,接下来我们开始分析第二步,load()方法。

2. load()

由于with()方法返回的是一个RequestManager对象,那么很容易就能想到,load()方法是在RequestManager类当中的,所以说我们首先要看的就是RequestManager这个类。不过在上一篇文章中我们学过,Glide是支持图片URL字符串、图片本地路径等等加载形式的,因此RequestManager中也有很多个load()方法的重载。但是这里我们不可能把每个load()方法的重载都看一遍,因此我们就只选其中一个加载图片URL字符串的load()方法来进行研究吧。

RequestManager类的简化代码如下所示:

public class RequestManager implements LifecycleListener {

    ...

    /**
     * Returns a request builder to load the given {@link String}.
     * signature.
     *
     * @see #fromString()
     * @see #load(Object)
     *
     * @param string A file path, or a uri or url handled by {@link com.bumptech.glide.load.model.UriLoader}.
     */
    public DrawableTypeRequest<String> load(String string) {
        return (DrawableTypeRequest<String>) fromString().load(string);
    }

    /**
     * Returns a request builder that loads data from {@link String}s using an empty signature.
     *
     * <p>
     *     Note - this method caches data using only the given String as the cache key. If the data is a Uri outside of
     *     your control, or you otherwise expect the data represented by the given String to change without the String
     *     identifier changing, Consider using
     *     {@link GenericRequestBuilder#signature(Key)} to mixin a signature
     *     you create that identifies the data currently at the given String that will invalidate the cache if that data
     *     changes. Alternatively, using {@link DiskCacheStrategy#NONE} and/or
     *     {@link DrawableRequestBuilder#skipMemoryCache(boolean)} may be appropriate.
     * </p>
     *
     * @see #from(Class)
     * @see #load(String)
     */
    public DrawableTypeRequest<String> fromString() {
        return loadGeneric(String.class);
    }

    private <T> DrawableTypeRequest<T> loadGeneric(Class<T> modelClass) {
        ModelLoader<T, InputStream> streamModelLoader = Glide.buildStreamModelLoader(modelClass, context);
        ModelLoader<T, ParcelFileDescriptor> fileDescriptorModelLoader =
                Glide.buildFileDescriptorModelLoader(modelClass, context);
        if (modelClass != null && streamModelLoader == null && fileDescriptorModelLoader == null) {
            throw new IllegalArgumentException("Unknown type " + modelClass + ". You must provide a Model of a type for"
                    + " which there is a registered ModelLoader, if you are using a custom model, you must first call"
                    + " Glide#register with a ModelLoaderFactory for your custom model class");
        }
        return optionsApplier.apply(
                new DrawableTypeRequest<T>(modelClass, streamModelLoader, fileDescriptorModelLoader, context,
                        glide, requestTracker, lifecycle, optionsApplier));
    }

    ...

}

 

RequestManager类的代码是非常多的,但是经过我这样简化之后,看上去就比较清爽了。在我们只探究加载图片URL字符串这一个load()方法的情况下,那么比较重要的方法就只剩下上述代码中的这三个方法。

那么我们先来看load()方法,这个方法中的逻辑是非常简单的,只有一行代码,就是先调用了fromString()方法,再调用load()方法,然后把传入的图片URL地址传进去。而fromString()方法也*为简单,就是调用了loadGeneric()方法,并且指定参数为String.class,因为load()方法传入的是一个字符串参数。那么看上去,好像主要的工作都是在loadGeneric()方法中进行的了。

其实loadGeneric()方法也没几行代码,这里分别调用了Glide.buildStreamModelLoader()方法和Glide.buildFileDescriptorModelLoader()方法来获得ModelLoader对象。ModelLoader对象是用于加载图片的,而我们给load()方法传入不同类型的参数,这里也会得到不同的ModelLoader对象。不过buildStreamModelLoader()方法内部的逻辑还是蛮复杂的,这里就不展开介绍了,要不然篇幅实在收不住,感兴趣的话你可以自己研究。由于我们刚才传入的参数是String.class,因此*终得到的是StreamStringLoader对象,它是实现了ModelLoader接口的。

*后我们可以看到,loadGeneric()方法是要返回一个DrawableTypeRequest对象的,因此在loadGeneric()方法的*后又去new了一个DrawableTypeRequest对象,然后把刚才获得的ModelLoader对象,还有一大堆杂七杂八的东西都传了进去。具体每个参数的含义和作用就不解释了,我们只看主线流程。

那么这个DrawableTypeRequest的作用是什么呢?我们来看下它的源码,如下所示:

public class DrawableTypeRequest<ModelType> extends DrawableRequestBuilder<ModelType> implements DownloadOptions {
    private final ModelLoader<ModelType, InputStream> streamModelLoader;
    private final ModelLoader<ModelType, ParcelFileDescriptor> fileDescriptorModelLoader;
    private final RequestManager.OptionsApplier optionsApplier;

    private static <A, Z, R> FixedLoadProvider<A, ImageVideoWrapper, Z, R> buildProvider(Glide glide,
            ModelLoader<A, InputStream> streamModelLoader,
            ModelLoader<A, ParcelFileDescriptor> fileDescriptorModelLoader, Class<Z> resourceClass,
            Class<R> transcodedClass,
            ResourceTranscoder<Z, R> transcoder) {
        if (streamModelLoader == null && fileDescriptorModelLoader == null) {
            return null;
        }

        if (transcoder == null) {
            transcoder = glide.buildTranscoder(resourceClass, transcodedClass);
        }
        DataLoadProvider<ImageVideoWrapper, Z> dataLoadProvider = glide.buildDataProvider(ImageVideoWrapper.class,
                resourceClass);
        ImageVideoModelLoader<A> modelLoader = new ImageVideoModelLoader<A>(streamModelLoader,
                fileDescriptorModelLoader);
        return new FixedLoadProvider<A, ImageVideoWrapper, Z, R>(modelLoader, transcoder, dataLoadProvider);
    }

    DrawableTypeRequest(Class<ModelType> modelClass, ModelLoader<ModelType, InputStream> streamModelLoader,
            ModelLoader<ModelType, ParcelFileDescriptor> fileDescriptorModelLoader, Context context, Glide glide,
            RequestTracker requestTracker, Lifecycle lifecycle, RequestManager.OptionsApplier optionsApplier) {
        super(context, modelClass,
                buildProvider(glide, streamModelLoader, fileDescriptorModelLoader, GifBitmapWrapper.class,
                        GlideDrawable.class, null),
                glide, requestTracker, lifecycle);
        this.streamModelLoader = streamModelLoader;
        this.fileDescriptorModelLoader = fileDescriptorModelLoader;
        this.optionsApplier = optionsApplier;
    }

    /**
     * Attempts to always load the resource as a {@link android.graphics.Bitmap}, even if it could actually be animated.
     *
     * @return A new request builder for loading a {@link android.graphics.Bitmap}
     */
    public BitmapTypeRequest<ModelType> asBitmap() {
        return optionsApplier.apply(new BitmapTypeRequest<ModelType>(this, streamModelLoader,
                fileDescriptorModelLoader, optionsApplier));
    }

    /**
     * Attempts to always load the resource as a {@link com.bumptech.glide.load.resource.gif.GifDrawable}.
     * <p>
     *     If the underlying data is not a GIF, this will fail. As a result, this should only be used if the model
     *     represents an animated GIF and the caller wants to interact with the GIfDrawable directly. Normally using
     *     just an {@link DrawableTypeRequest} is sufficient because it will determine whether or
     *     not the given data represents an animated GIF and return the appropriate animated or not animated
     *     {@link android.graphics.drawable.Drawable} automatically.
     * </p>
     *
     * @return A new request builder for loading a {@link com.bumptech.glide.load.resource.gif.GifDrawable}.
     */
    public GifTypeRequest<ModelType> asGif() {
        return optionsApplier.apply(new GifTypeRequest<ModelType>(this, streamModelLoader, optionsApplier));
    }

    ...
}

 

这个类中的代码本身就不多,我只是稍微做了一点简化。可以看到,*主要的就是它提供了asBitmap()和asGif()这两个方法。这两个方法我们在上一篇文章当中都是学过的,分别是用于强制指定加载静态图片和动态图片。而从源码中可以看出,它们分别又创建了一个BitmapTypeRequest和GifTypeRequest,如果没有进行强制指定的话,那默认就是使用DrawableTypeRequest。

好的,那么我们再回到RequestManager的load()方法中。刚才已经分析过了,fromString()方法会返回一个DrawableTypeRequest对象,接下来会调用这个对象的load()方法,把图片的URL地址传进去。但是我们刚才看到了,DrawableTypeRequest中并没有load()方法,那么很容易就能猜想到,load()方法是在父类当中的。

DrawableTypeRequest的父类是DrawableRequestBuilder,我们来看下这个类的源码:

public class DrawableRequestBuilder<ModelType>
        extends GenericRequestBuilder<ModelType, ImageVideoWrapper, GifBitmapWrapper, GlideDrawable>
        implements BitmapOptions, DrawableOptions {

    DrawableRequestBuilder(Context context, Class<ModelType> modelClass,
            LoadProvider<ModelType, ImageVideoWrapper, GifBitmapWrapper, GlideDrawable> loadProvider, Glide glide,
            RequestTracker requestTracker, Lifecycle lifecycle) {
        super(context, modelClass, loadProvider, GlideDrawable.class, glide, requestTracker, lifecycle);
        // Default to animating.
        crossFade();
    }

    public DrawableRequestBuilder<ModelType> thumbnail(
            DrawableRequestBuilder<?> thumbnailRequest) {
        super.thumbnail(thumbnailRequest);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> thumbnail(
            GenericRequestBuilder<?, ?, ?, GlideDrawable> thumbnailRequest) {
        super.thumbnail(thumbnailRequest);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> thumbnail(float sizeMultiplier) {
        super.thumbnail(sizeMultiplier);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> sizeMultiplier(float sizeMultiplier) {
        super.sizeMultiplier(sizeMultiplier);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> decoder(ResourceDecoder<ImageVideoWrapper, GifBitmapWrapper> decoder) {
        super.decoder(decoder);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> cacheDecoder(ResourceDecoder<File, GifBitmapWrapper> cacheDecoder) {
        super.cacheDecoder(cacheDecoder);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> encoder(ResourceEncoder<GifBitmapWrapper> encoder) {
        super.encoder(encoder);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> priority(Priority priority) {
        super.priority(priority);
        return this;
    }

    public DrawableRequestBuilder<ModelType> transform(BitmapTransformation... transformations) {
        return bitmapTransform(transformations);
    }

    public DrawableRequestBuilder<ModelType> centerCrop() {
        return transform(glide.getDrawableCenterCrop());
    }

    public DrawableRequestBuilder<ModelType> fitCenter() {
        return transform(glide.getDrawableFitCenter());
    }

    public DrawableRequestBuilder<ModelType> bitmapTransform(Transformation<Bitmap>... bitmapTransformations) {
        GifBitmapWrapperTransformation[] transformations =
                new GifBitmapWrapperTransformation[bitmapTransformations.length];
        for (int i = 0; i < bitmapTransformations.length; i++) {
            transformations[i] = new GifBitmapWrapperTransformation(glide.getBitmapPool(), bitmapTransformations[i]);
        }
        return transform(transformations);
    }

    @Override
    public DrawableRequestBuilder<ModelType> transform(Transformation<GifBitmapWrapper>... transformation) {
        super.transform(transformation);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> transcoder(
            ResourceTranscoder<GifBitmapWrapper, GlideDrawable> transcoder) {
        super.transcoder(transcoder);
        return this;
    }

    public final DrawableRequestBuilder<ModelType> crossFade() {
        super.animate(new DrawableCrossFadeFactory<GlideDrawable>());
        return this;
    }

    public DrawableRequestBuilder<ModelType> crossFade(int duration) {
        super.animate(new DrawableCrossFadeFactory<GlideDrawable>(duration));
        return this;
    }

    public DrawableRequestBuilder<ModelType> crossFade(int animationId, int duration) {
        super.animate(new DrawableCrossFadeFactory<GlideDrawable>(context, animationId,
                duration));
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> dontAnimate() {
        super.dontAnimate();
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> animate(ViewPropertyAnimation.Animator animator) {
        super.animate(animator);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> animate(int animationId) {
        super.animate(animationId);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> placeholder(int resourceId) {
        super.placeholder(resourceId);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> placeholder(Drawable drawable) {
        super.placeholder(drawable);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> fallback(Drawable drawable) {
        super.fallback(drawable);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> fallback(int resourceId) {
        super.fallback(resourceId);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> error(int resourceId) {
        super.error(resourceId);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> error(Drawable drawable) {
        super.error(drawable);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> listener(
            RequestListener<? super ModelType, GlideDrawable> requestListener) {
        super.listener(requestListener);
        return this;
    }
    @Override
    public DrawableRequestBuilder<ModelType> diskCacheStrategy(DiskCacheStrategy strategy) {
        super.diskCacheStrategy(strategy);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> skipMemoryCache(boolean skip) {
        super.skipMemoryCache(skip);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> override(int width, int height) {
        super.override(width, height);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> sourceEncoder(Encoder<ImageVideoWrapper> sourceEncoder) {
        super.sourceEncoder(sourceEncoder);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> dontTransform() {
        super.dontTransform();
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> signature(Key signature) {
        super.signature(signature);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> load(ModelType model) {
        super.load(model);
        return this;
    }

    @Override
    public DrawableRequestBuilder<ModelType> clone() {
        return (DrawableRequestBuilder<ModelType>) super.clone();
    }

    @Override
    public Target<GlideDrawable> into(ImageView view) {
        return super.into(view);
    }

    @Override
    void applyFitCenter() {
        fitCenter();
    }

    @Override
    void applyCenterCrop() {
        centerCrop();
    }
}

 

DrawableRequestBuilder中有很多个方法,这些方法其实就是Glide*大多数的API了。里面有不少我们在上篇文章中已经用过了,比如说placeholder()方法、error()方法、diskCacheStrategy()方法、override()方法等。当然还有很多暂时还没用到的API,我们会在后面的文章当中学习。

到这里,第二步load()方法也就分析结束了。为什么呢?因为你会发现DrawableRequestBuilder类中有一个into()方法(上述代码第220行),也就是说,*终load()方法返回的其实就是一个DrawableTypeRequest对象。那么接下来我们就要进行第三步了,分析into()方法中的逻辑。

3. into()

如果说前面两步都是在准备开胃小菜的话,那么现在终于要进入主菜了,因为into()方法也是整个Glide图片加载流程中逻辑*复杂的地方。

不过从刚才的代码来看,into()方法中并没有任何逻辑,只有一句super.into(view)。那么很显然,into()方法的具体逻辑都是在DrawableRequestBuilder的父类当中了。

DrawableRequestBuilder的父类是GenericRequestBuilder,我们来看一下GenericRequestBuilder类中的into()方法,如下所示:

public Target<TranscodeType> into(ImageView view) {
    Util.assertMainThread();
    if (view == null) {
        throw new IllegalArgumentException("You must pass in a non null View");
    }
    if (!isTransformationSet && view.getScaleType() != null) {
        switch (view.getScaleType()) {
            case CENTER_CROP:
                applyCenterCrop();
                break;
            case FIT_CENTER:
            case FIT_START:
            case FIT_END:
                applyFitCenter();
                break;
            //$CASES-OMITTED$
            default:
                // Do nothing.
        }
    }
    return into(glide.buildImageViewTarget(view, transcodeClass));
}

 

这里前面一大堆的判断逻辑我们都可以先不用管,等到后面文章讲transform的时候会再进行解释,现在我们只需要关注*后一行代码。*后一行代码先是调用了glide.buildImageViewTarget()方法,这个方法会构建出一个Target对象,Target对象则是用来*终展示图片用的,如果我们跟进去的话会看到如下代码:

<R> Target<R> buildImageViewTarget(ImageView imageView, Class<R> transcodedClass) {
    return imageViewTargetFactory.buildTarget(imageView, transcodedClass);
}

 

这里其实又是调用了ImageViewTargetFactory的buildTarget()方法,我们继续跟进去,代码如下所示:

public class ImageViewTargetFactory {

    @SuppressWarnings("unchecked")
    public <Z> Target<Z> buildTarget(ImageView view, Class<Z> clazz) {
        if (GlideDrawable.class.isAssignableFrom(clazz)) {
            return (Target<Z>) new GlideDrawableImageViewTarget(view);
        } else if (Bitmap.class.equals(clazz)) {
            return (Target<Z>) new BitmapImageViewTarget(view);
        } else if (Drawable.class.isAssignableFrom(clazz)) {
            return (Target<Z>) new DrawableImageViewTarget(view);
        } else {
            throw new IllegalArgumentException("Unhandled class: " + clazz
                    + ", try .as*(Class).transcode(ResourceTranscoder)");
        }
    }

可以看到,在buildTarget()方法中会根据传入的class参数来构建不同的Target对象。那如果你要分析这个class参数是从哪儿传过来的,这可有得你分析了,简单起见我直接帮大家梳理清楚。这个class参数其实基本上只有两种情况,如果你在使用Glide加载图片的时候调用了asBitmap()方法,那么这里就会构建出BitmapImageViewTarget对象,否则的话构建的都是GlideDrawableImageViewTarget对象。至于上述代码中的DrawableImageViewTarget对象,这个通常都是用不到的,我们可以暂时不用管它。

也就是说,通过glide.buildImageViewTarget()方法,我们构建出了一个GlideDrawableImageViewTarget对象。那现在回到刚才into()方法的*后一行,可以看到,这里又将这个参数传入到了GenericRequestBuilder另一个接收Target对象的into()方法当中了。我们来看一下这个into()方法的源码:

public <Y extends Target<TranscodeType>> Y into(Y target) {
    Util.assertMainThread();
    if (target == null) {
        throw new IllegalArgumentException("You must pass in a non null Target");
    }
    if (!isModelSet) {
        throw new IllegalArgumentException("You must first set a model (try #load())");
    }
    Request previous = target.getRequest();
    if (previous != null) {
        previous.clear();
        requestTracker.removeRequest(previous);
        previous.recycle();
    }
    Request request = buildRequest(target);
    target.setRequest(request);
    lifecycle.addListener(target);
    requestTracker.runRequest(request);
    return target;
}

 

这里我们还是只抓核心代码,其实只有两行是*关键的,第15行调用buildRequest()方法构建出了一个Request对象,还有第18行来执行这个Request。

Request是用来发出加载图片请求的,它是Glide中非常关键的一个组件。我们先来看buildRequest()方法是如何构建Request对象的:

private Request buildRequest(Target<TranscodeType> target) {
    if (priority == null) {
        priority = Priority.NORMAL;
    }
    return buildRequestRecursive(target, null);
}

private Request buildRequestRecursive(Target<TranscodeType> target, ThumbnailRequestCoordinator parentCoordinator) {
    if (thumbnailRequestBuilder != null) {
        if (isThumbnailBuilt) {
            throw new IllegalStateException("You cannot use a request as both the main request and a thumbnail, "
                    + "consider using clone() on the request(s) passed to thumbnail()");
        }
        // Recursive case: contains a potentially recursive thumbnail request builder.
        if (thumbnailRequestBuilder.animationFactory.equals(NoAnimation.getFactory())) {
            thumbnailRequestBuilder.animationFactory = animationFactory;
        }

        if (thumbnailRequestBuilder.priority == null) {
            thumbnailRequestBuilder.priority = getThumbnailPriority();
        }

        if (Util.isValidDimensions(overrideWidth, overrideHeight)
                && !Util.isValidDimensions(thumbnailRequestBuilder.overrideWidth,
                        thumbnailRequestBuilder.overrideHeight)) {
          thumbnailRequestBuilder.override(overrideWidth, overrideHeight);
        }

        ThumbnailRequestCoordinator coordinator = new ThumbnailRequestCoordinator(parentCoordinator);
        Request fullRequest = obtainRequest(target, sizeMultiplier, priority, coordinator);
        // Guard against infinite recursion.
        isThumbnailBuilt = true;
        // Recursively generate thumbnail requests.
        Request thumbRequest = thumbnailRequestBuilder.buildRequestRecursive(target, coordinator);
        isThumbnailBuilt = false;
        coordinator.setRequests(fullRequest, thumbRequest);
        return coordinator;
    } else if (thumbSizeMultiplier != null) {
        // Base case: thumbnail multiplier generates a thumbnail request, but cannot recurse.
        ThumbnailRequestCoordinator coordinator = new ThumbnailRequestCoordinator(parentCoordinator);
        Request fullRequest = obtainRequest(target, sizeMultiplier, priority, coordinator);
        Request thumbnailRequest = obtainRequest(target, thumbSizeMultiplier, getThumbnailPriority(), coordinator);
        coordinator.setRequests(fullRequest, thumbnailRequest);
        return coordinator;
    } else {
        // Base case: no thumbnail.
        return obtainRequest(target, sizeMultiplier, priority, parentCoordinator);
    }
}

private Request obtainRequest(Target<TranscodeType> target, float sizeMultiplier, Priority priority,
        RequestCoordinator requestCoordinator) {
    return GenericRequest.obtain(
            loadProvider,
            model,
            signature,
            context,
            priority,
            target,
            sizeMultiplier,
            placeholderDrawable,
            placeholderId,
            errorPlaceholder,
            errorId,
            fallbackDrawable,
            fallbackResource,
            requestListener,
            requestCoordinator,
            glide.getEngine(),
            transformation,
            transcodeClass,
            isCacheable,
            animationFactory,
            overrideWidth,
            overrideHeight,
            diskCacheStrategy);
}

 

可以看到,buildRequest()方法的内部其实又调用了buildRequestRecursive()方法,而buildRequestRecursive()方法中的代码虽然有点长,但是其中90%的代码都是在处理缩略图的。如果我们只追主线流程的话,那么只需要看第47行代码就可以了。这里调用了obtainRequest()方法来获取一个Request对象,而obtainRequest()方法中又去调用了GenericRequest的obtain()方法。注意这个obtain()方法需要传入非常多的参数,而其中很多的参数我们都是比较熟悉的,像什么placeholderId、errorPlaceholder、diskCacheStrategy等等。因此,我们就有理由猜测,刚才在load()方法中调用的所有API,其实都是在这里组装到Request对象当中的。那么我们进入到这个GenericRequest的obtain()方法瞧一瞧:

public final class GenericRequest<A, T, Z, R> implements Request, SizeReadyCallback,
        ResourceCallback {

    ...

    public static <A, T, Z, R> GenericRequest<A, T, Z, R> obtain(
            LoadProvider<A, T, Z, R> loadProvider,
            A model,
            Key signature,
            Context context,
            Priority priority,
            Target<R> target,
            float sizeMultiplier,
            Drawable placeholderDrawable,
            int placeholderResourceId,
            Drawable errorDrawable,
            int errorResourceId,
            Drawable fallbackDrawable,
            int fallbackResourceId,
            RequestListener<? super A, R> requestListener,
            RequestCoordinator requestCoordinator,
            Engine engine,
            Transformation<Z> transformation,
            Class<R> transcodeClass,
            boolean isMemoryCacheable,
            GlideAnimationFactory<R> animationFactory,
            int overrideWidth,
            int overrideHeight,
            DiskCacheStrategy diskCacheStrategy) {
        @SuppressWarnings("unchecked")
        GenericRequest<A, T, Z, R> request = (GenericRequest<A, T, Z, R>) REQUEST_POOL.poll();
        if (request == null) {
            request = new GenericRequest<A, T, Z, R>();
        }
        request.init(loadProvider,
                model,
                signature,
                context,
                priority,
                target,
                sizeMultiplier,
                placeholderDrawable,
                placeholderResourceId,
                errorDrawable,
                errorResourceId,
                fallbackDrawable,
                fallbackResourceId,
                requestListener,
                requestCoordinator,
                engine,
                transformation,
                transcodeClass,
                isMemoryCacheable,
                animationFactory,
                overrideWidth,
                overrideHeight,
                diskCacheStrategy);
        return request;
    }

    ...
}

 

可以看到,这里在第33行去new了一个GenericRequest对象,并在*后一行返回,也就是说,obtain()方法实际上获得的就是一个GenericRequest对象。另外这里又在第35行调用了GenericRequest的init(),里面主要就是一些赋值的代码,将传入的这些参数赋值到GenericRequest的成员变量当中,我们就不再跟进去看了。

好,那现在解决了构建Request对象的问题,接下来我们看一下这个Request对象又是怎么执行的。回到刚才的into()方法,你会发现在第18行调用了requestTracker.runRequest()方法来去执行这个Request,那么我们跟进去瞧一瞧,如下所示:

/**
 * Starts tracking the given request.
 */
public void runRequest(Request request) {
    requests.add(request);
    if (!isPaused) {
        request.begin();
    } else {
        pendingRequests.add(request);
    }
}

 

这里有一个简单的逻辑判断,就是先判断Glide当前是不是处理暂停状态,如果不是暂停状态就调用Request的begin()方法来执行Request,否则的话就先将Request添加到待执行队列里面,等暂停状态解除了之后再执行。

暂停请求的功能仍然不是这篇文章所关心的,这里就直接忽略了,我们重点来看这个begin()方法。由于当前的Request对象是一个GenericRequest,因此这里就需要看GenericRequest中的begin()方法了,如下所示:

@Override
public void begin() {
    startTime = LogTime.getLogTime();
    if (model == null) {
        onException(null);
        return;
    }
    status = Status.WAITING_FOR_SIZE;
    if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
        onSizeReady(overrideWidth, overrideHeight);
    } else {
        target.getSize(this);
    }
    if (!isComplete() && !isFailed() && canNotifyStatusChanged()) {
        target.onLoadStarted(getPlaceholderDrawable());
    }
    if (Log.isLoggable(TAG, Log.VERBOSE)) {
        logV("finished run method in " + LogTime.getElapsedMillis(startTime));
    }
}

 

这里我们来注意几个细节,首先如果model等于null,model也就是我们在第二步load()方法中传入的图片URL地址,这个时候会调用onException()方法。如果你跟到onException()方法里面去看看,你会发现它*终会调用到一个setErrorPlaceholder()当中,如下所示:

private void setErrorPlaceholder(Exception e) {
    if (!canNotifyStatusChanged()) {
        return;
    }
    Drawable error = model == null ? getFallbackDrawable() : null;
    if (error == null) {
      error = getErrorDrawable();
    }
    if (error == null) {
        error = getPlaceholderDrawable();
    }
    target.onLoadFailed(e, error);
}

 

这个方法中会先去获取一个error的占位图,如果获取不到的话会再去获取一个loading占位图,然后调用target.onLoadFailed()方法并将占位图传入。那么onLoadFailed()方法中做了什么呢?我们看一下:

public abstract class ImageViewTarget<Z> extends ViewTarget<ImageView, Z> implements GlideAnimation.ViewAdapter {

    ...

    @Override
    public void onLoadStarted(Drawable placeholder) {
        view.setImageDrawable(placeholder);
    }

    @Override
    public void onLoadFailed(Exception e, Drawable errorDrawable) {
        view.setImageDrawable(errorDrawable);
    }

    ...
}

 

很简单,其实就是将这张error占位图显示到ImageView上而已,因为现在出现了异常,没办法展示正常的图片了。而如果你仔细看下刚才begin()方法的第15行,你会发现它又调用了一个target.onLoadStarted()方法,并传入了一个loading占位图,在也就说,在图片请求开始之前,会先使用这张占位图代替*终的图片显示。这也是我们在上一篇文章中学过的placeholder()和error()这两个占位图API底层的实现原理。

好,那么我们继续回到begin()方法。刚才讲了占位图的实现,那么具体的图片加载又是从哪里开始的呢?是在begin()方法的第10行和第12行。这里要分两种情况,一种是你使用了override() API为图片指定了一个固定的宽高,一种是没有指定。如果指定了的话,就会执行第10行代码,调用onSizeReady()方法。如果没指定的话,就会执行第12行代码,调用target.getSize()方法。这个target.getSize()方法的内部会根据ImageView的layout_width和layout_height值做一系列的计算,来算出图片应该的宽高。具体的计算细节我就不带着大家分析了,总之在计算完之后,它也会调用onSizeReady()方法。也就是说,不管是哪种情况,*终都会调用到onSizeReady()方法,在这里进行下一步操作。那么我们跟到这个方法里面来:

@Override
public void onSizeReady(int width, int height) {
    if (Log.isLoggable(TAG, Log.VERBOSE)) {
        logV("Got onSizeReady in " + LogTime.getElapsedMillis(startTime));
    }
    if (status != Status.WAITING_FOR_SIZE) {
        return;
    }
    status = Status.RUNNING;
    width = Math.round(sizeMultiplier * width);
    height = Math.round(sizeMultiplier * height);
    ModelLoader<A, T> modelLoader = loadProvider.getModelLoader();
    final DataFetcher<T> dataFetcher = modelLoader.getResourceFetcher(model, width, height);
    if (dataFetcher == null) {
        onException(new Exception("Failed to load model: \'" + model + "\'"));
        return;
    }
    ResourceTranscoder<Z, R> transcoder = loadProvider.getTranscoder();
    if (Log.isLoggable(TAG, Log.VERBOSE)) {
        logV("finished setup for calling load in " + LogTime.getElapsedMillis(startTime));
    }
    loadedFromMemoryCache = true;
    loadStatus = engine.load(signature, width, height, dataFetcher, loadProvider, transformation, transcoder,
            priority, isMemoryCacheable, diskCacheStrategy, this);
    loadedFromMemoryCache = resource != null;
    if (Log.isLoggable(TAG, Log.VERBOSE)) {
        logV("finished onSizeReady in " + LogTime.getElapsedMillis(startTime));
    }
}

 

从这里开始,真正复杂的地方来了,我们需要慢慢进行分析。先来看一下,在第12行调用了loadProvider.getModelLoader()方法,那么我们*个要搞清楚的就是,这个loadProvider是什么?要搞清楚这点,需要先回到第二步的load()方法当中。还记得load()方法是返回一个DrawableTypeRequest对象吗?刚才我们只是分析了DrawableTypeRequest当中的asBitmap()和asGif()方法,并没有仔细看它的构造函数,现在我们重新来看一下DrawableTypeRequest类的构造函数:

public class DrawableTypeRequest<ModelType> extends DrawableRequestBuilder<ModelType> implements DownloadOptions {

    private final ModelLoader<ModelType, InputStream> streamModelLoader;
    private final ModelLoader<ModelType, ParcelFileDescriptor> fileDescriptorModelLoader;
    private final RequestManager.OptionsApplier optionsApplier;

    private static <A, Z, R> FixedLoadProvider<A, ImageVideoWrapper, Z, R> buildProvider(Glide glide,
            ModelLoader<A, InputStream> streamModelLoader,
            ModelLoader<A, ParcelFileDescriptor> fileDescriptorModelLoader, Class<Z> resourceClass,
            Class<R> transcodedClass,
            ResourceTranscoder<Z, R> transcoder) {
        if (streamModelLoader == null && fileDescriptorModelLoader == null) {
            return null;
        }
        if (transcoder == null) {
            transcoder = glide.buildTranscoder(resourceClass, transcodedClass);
        }
        DataLoadProvider<ImageVideoWrapper, Z> dataLoadProvider = glide.buildDataProvider(ImageVideoWrapper.class,
                resourceClass);
        ImageVideoModelLoader<A> modelLoader = new ImageVideoModelLoader<A>(streamModelLoader,
                fileDescriptorModelLoader);
        return new FixedLoadProvider<A, ImageVideoWrapper, Z, R>(modelLoader, transcoder, dataLoadProvider);
    }

    DrawableTypeRequest(Class<ModelType> modelClass, ModelLoader<ModelType, InputStream> streamModelLoader,
            ModelLoader<ModelType, ParcelFileDescriptor> fileDescriptorModelLoader, Context context, Glide glide,
            RequestTracker requestTracker, Lifecycle lifecycle, RequestManager.OptionsApplier optionsApplier) {
        super(context, modelClass,
                buildProvider(glide, streamModelLoader, fileDescriptorModelLoader, GifBitmapWrapper.class,
                        GlideDrawable.class, null),
                glide, requestTracker, lifecycle);
        this.streamModelLoader = streamModelLoader;
        this.fileDescriptorModelLoader = fileDescriptorModelLoader;
        this.optionsApplier = optionsApplier;
    }

    ...
}

 

可以看到,这里在第29行,也就是构造函数中,调用了一个buildProvider()方法,并把streamModelLoader和fileDescriptorModelLoader等参数传入到这个方法中,这两个ModelLoader就是之前在loadGeneric()方法中构建出来的。

那么我们再来看一下buildProvider()方法里面做了什么,在第16行调用了glide.buildTranscoder()方法来构建一个ResourceTranscoder,它是用于对图片进行转码的,由于ResourceTranscoder是一个接口,这里实际会构建出一个GifBitmapWrapperDrawableTranscoder对象。

接下来在第18行调用了glide.buildDataProvider()方法来构建一个DataLoadProvider,它是用于对图片进行编解码的,由于DataLoadProvider是一个接口,这里实际会构建出一个ImageVideoGifDrawableLoadProvider对象。

然后在第20行,new了一个ImageVideoModelLoader的实例,并把之前loadGeneric()方法中构建的两个ModelLoader封装到了ImageVideoModelLoader当中。

*后,在第22行,new出一个FixedLoadProvider,并把刚才构建的出来的GifBitmapWrapperDrawableTranscoder、ImageVideoModelLoader、ImageVideoGifDrawableLoadProvider都封装进去,这个也就是onSizeReady()方法中的loadProvider了。

好的,那么我们回到onSizeReady()方法中,在onSizeReady()方法的第12行和第18行,分别调用了loadProvider的getModelLoader()方法和getTranscoder()方法,那么得到的对象也就是刚才我们分析的ImageVideoModelLoader和GifBitmapWrapperDrawableTranscoder了。而在第13行,又调用了ImageVideoModelLoader的getResourceFetcher()方法,这里我们又需要跟进去瞧一瞧了,代码如下所示:

public class ImageVideoModelLoader<A> implements ModelLoader<A, ImageVideoWrapper> {
    private static final String TAG = "IVML";

    private final ModelLoader<A, InputStream> streamLoader;
    private final ModelLoader<A, ParcelFileDescriptor> fileDescriptorLoader;

    public ImageVideoModelLoader(ModelLoader<A, InputStream> streamLoader,
            ModelLoader<A, ParcelFileDescriptor> fileDescriptorLoader) {
        if (streamLoader == null && fileDescriptorLoader == null) {
            throw new NullPointerException("At least one of streamLoader and fileDescriptorLoader must be non null");
        }
        this.streamLoader = streamLoader;
        this.fileDescriptorLoader = fileDescriptorLoader;
    }

    @Override
    public DataFetcher<ImageVideoWrapper> getResourceFetcher(A model, int width, int height) {
        DataFetcher<InputStream> streamFetcher = null;
        if (streamLoader != null) {
            streamFetcher = streamLoader.getResourceFetcher(model, width, height);
        }
        DataFetcher<ParcelFileDescriptor> fileDescriptorFetcher = null;
        if (fileDescriptorLoader != null) {
            fileDescriptorFetcher = fileDescriptorLoader.getResourceFetcher(model, width, height);
        }

        if (streamFetcher != null || fileDescriptorFetcher != null) {
            return new ImageVideoFetcher(streamFetcher, fileDescriptorFetcher);
        } else {
            return null;
        }
    }

    static class ImageVideoFetcher implements DataFetcher<ImageVideoWrapper> {
        private final DataFetcher<InputStream> streamFetcher;
        private final DataFetcher<ParcelFileDescriptor> fileDescriptorFetcher;

        public ImageVideoFetcher(DataFetcher<InputStream> streamFetcher,
                DataFetcher<ParcelFileDescriptor> fileDescriptorFetcher) {
            this.streamFetcher = streamFetcher;
            this.fileDescriptorFetcher = fileDescriptorFetcher;
        }

        ...
    }
}

 

可以看到,在第20行会先调用streamLoader.getResourceFetcher()方法获取一个DataFetcher,而这个streamLoader其实就是我们在loadGeneric()方法中构建出的StreamStringLoader,调用它的getResourceFetcher()方法会得到一个HttpUrlFetcher对象。然后在第28行new出了一个ImageVideoFetcher对象,并把获得的HttpUrlFetcher对象传进去。也就是说,ImageVideoModelLoader的getResourceFetcher()方法得到的是一个ImageVideoFetcher。

那么我们再次回到onSizeReady()方法,在onSizeReady()方法的第23行,这里将刚才获得的ImageVideoFetcher、GifBitmapWrapperDrawableTranscoder等等一系列的值一起传入到了Engine的load()方法当中。接下来我们就要看一看,这个Engine的load()方法当中,到底做了什么?代码如下所示:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {

    ...    

    public <T, Z, R> LoadStatus load(Key signature, int width, int height, DataFetcher<T> fetcher,
            DataLoadProvider<T, Z> loadProvider, Transformation<Z> transformation, ResourceTranscoder<Z, R> transcoder,
            Priority priority, boolean isMemoryCacheable, DiskCacheStrategy diskCacheStrategy, ResourceCallback cb) {
        Util.assertMainThread();
        long startTime = LogTime.getLogTime();

        final String id = fetcher.getId();
        EngineKey key = keyFactory.buildKey(id, signature, width, height, loadProvider.getCacheDecoder(),
                loadProvider.getSourceDecoder(), transformation, loadProvider.getEncoder(),
                transcoder, loadProvider.getSourceEncoder());

        EngineResource<?> cached = loadFromCache(key, isMemoryCacheable);
        if (cached != null) {
            cb.onResourceReady(cached);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Loaded resource from cache", startTime, key);
            }
            return null;
        }

        EngineResource<?> active = loadFromActiveResources(key, isMemoryCacheable);
        if (active != null) {
            cb.onResourceReady(active);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Loaded resource from active resources", startTime, key);
            }
            return null;
        }

        EngineJob current = jobs.get(key);
        if (current != null) {
            current.addCallback(cb);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Added to existing load", startTime, key);
            }
            return new LoadStatus(cb, current);
        }

        EngineJob engineJob = engineJobFactory.build(key, isMemoryCacheable);
        DecodeJob<T, Z, R> decodeJob = new DecodeJob<T, Z, R>(key, width, height, fetcher, loadProvider, transformation,
                transcoder, diskCacheProvider, diskCacheStrategy, priority);
        EngineRunnable runnable = new EngineRunnable(engineJob, decodeJob, priority);
        jobs.put(key, engineJob);
        engineJob.addCallback(cb);
        engineJob.start(runnable);

        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logWithTimeAndKey("Started new load", startTime, key);
        }
        return new LoadStatus(cb, engineJob);
    }

    ...
}

 

load()方法中的代码虽然有点长,但大多数的代码都是在处理缓存的。关于缓存的内容我们会在下一篇文章当中学习,现在只需要从第45行看起就行。这里构建了一个EngineJob,它的主要作用就是用来开启线程的,为后面的异步加载图片做准备。接下来第46行创建了一个DecodeJob对象,从名字上来看,它好像是用来对图片进行解码的,但实际上它的任务十分繁重,待会我们就知道了。继续往下看,第48行创建了一个EngineRunnable对象,并且在51行调用了EngineJob的start()方法来运行EngineRunnable对象,这实际上就是让EngineRunnable的run()方法在子线程当中执行了。那么我们现在就可以去看看EngineRunnable的run()方法里做了些什么,如下所示:

@Override
public void run() {
    if (isCancelled) {
        return;
    }
    Exception exception = null;
    Resource<?> resource = null;
    try {
        resource = decode();
    } catch (Exception e) {
        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            Log.v(TAG, "Exception decoding", e);
        }
        exception = e;
    }
    if (isCancelled) {
        if (resource != null) {
            resource.recycle();
        }
        return;
    }
    if (resource == null) {
        onLoadFailed(exception);
    } else {
        onLoadComplete(resource);
    }
}

 

这个方法中的代码并不多,但我们仍然还是要抓重点。在第9行,这里调用了一个decode()方法,并且这个方法返回了一个Resource对象。看上去所有的逻辑应该都在这个decode()方法执行的了,那我们跟进去瞧一瞧:

private Resource<?> decode() throws Exception {
    if (isDecodingFromCache()) {
        return decodeFromCache();
    } else {
        return decodeFromSource();
    }
}

 

decode()方法中又分了两种情况,从缓存当中去decode图片的话就会执行decodeFromCache(),否则的话就执行decodeFromSource()。本篇文章中我们不讨论缓存的情况,那么就直接来看decodeFromSource()方法的代码吧,如下所示:

private Resource<?> decodeFromSource() throws Exception {
    return decodeJob.decodeFromSource();
}

 

这里又调用了DecodeJob的decodeFromSource()方法。刚才已经说了,DecodeJob的任务十分繁重,我们继续跟进看一看吧:

class DecodeJob<A, T, Z> {

    ...

    public Resource<Z> decodeFromSource() throws Exception {
        Resource<T> decoded = decodeSource();
        return transformEncodeAndTranscode(decoded);
    }

    private Resource<T> decodeSource() throws Exception {
        Resource<T> decoded = null;
        try {
            long startTime = LogTime.getLogTime();
            final A data = fetcher.loadData(priority);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Fetched data", startTime);
            }
            if (isCancelled) {
                return null;
            }
            decoded = decodeFromSourceData(data);
        } finally {
            fetcher.cleanup();
        }
        return decoded;
    }

    ...
}

 

主要的方法就这些,我都帮大家提取出来了。那么我们先来看一下decodeFromSource()方法,其实它的工作分为两部,*步是调用decodeSource()方法来获得一个Resource对象,第二步是调用transformEncodeAndTranscode()方法来处理这个Resource对象。

那么我们先来看*步,decodeSource()方法中的逻辑也并不复杂,首先在第14行调用了fetcher.loadData()方法。那么这个fetcher是什么呢?其实就是刚才在onSizeReady()方法中得到的ImageVideoFetcher对象,这里调用它的loadData()方法,代码如下所示:

@Override
public ImageVideoWrapper loadData(Priority priority) throws Exception {
    InputStream is = null;
    if (streamFetcher != null) {
        try {
            is = streamFetcher.loadData(priority);
        } catch (Exception e) {
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                Log.v(TAG, "Exception fetching input stream, trying ParcelFileDescriptor", e);
            }
            if (fileDescriptorFetcher == null) {
                throw e;
            }
        }
    }
    ParcelFileDescriptor fileDescriptor = null;
    if (fileDescriptorFetcher != null) {
        try {
            fileDescriptor = fileDescriptorFetcher.loadData(priority);
        } catch (Exception e) {
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                Log.v(TAG, "Exception fetching ParcelFileDescriptor", e);
            }
            if (is == null) {
                throw e;
            }
        }
    }
    return new ImageVideoWrapper(is, fileDescriptor);
}

 

可以看到,在ImageVideoFetcher的loadData()方法的第6行,这里又去调用了streamFetcher.loadData()方法,那么这个streamFetcher是什么呢?自然就是刚才在组装ImageVideoFetcher对象时传进来的HttpUrlFetcher了。因此这里又会去调用HttpUrlFetcher的loadData()方法,那么我们继续跟进去瞧一瞧:

public class HttpUrlFetcher implements DataFetcher<InputStream> {

    ...

    @Override
    public InputStream loadData(Priority priority) throws Exception {
        return loadDataWithRedirects(glideUrl.toURL(), 0 /*redirects*/, null /*lastUrl*/, glideUrl.getHeaders());
    }

    private InputStream loadDataWithRedirects(URL url, int redirects, URL lastUrl, Map<String, String> headers)
            throws IOException {
        if (redirects >= MAXIMUM_REDIRECTS) {
            throw new IOException("Too many (> " + MAXIMUM_REDIRECTS + ") redirects!");
        } else {
            // Comparing the URLs using .equals performs additional network I/O and is generally broken.
            // See http://michaelscharf.blogspot.com/2006/11/javaneturlequals-and-hashcode-make.html.
            try {
                if (lastUrl != null && url.toURI().equals(lastUrl.toURI())) {
                    throw new IOException("In re-direct loop");
                }
            } catch (URISyntaxException e) {
                // Do nothing, this is best effort.
            }
        }
        urlConnection = connectionFactory.build(url);
        for (Map.Entry<String, String> headerEntry : headers.entrySet()) {
          urlConnection.addRequestProperty(headerEntry.getKey(), headerEntry.getValue());
        }
        urlConnection.setConnectTimeout(2500);
        urlConnection.setReadTimeout(2500);
        urlConnection.setUseCaches(false);
        urlConnection.setDoInput(true);

        // Connect explicitly to avoid errors in decoders if connection fails.
        urlConnection.connect();
        if (isCancelled) {
            return null;
        }
        final int statusCode = urlConnection.getResponseCode();
        if (statusCode / 100 == 2) {
            return getStreamForSuccessfulRequest(urlConnection);
        } else if (statusCode / 100 == 3) {
            String redirectUrlString = urlConnection.getHeaderField("Location");
            if (TextUtils.isEmpty(redirectUrlString)) {
                throw new IOException("Received empty or null redirect url");
            }
            URL redirectUrl = new URL(url, redirectUrlString);
            return loadDataWithRedirects(redirectUrl, redirects + 1, url, headers);
        } else {
            if (statusCode == -1) {
                throw new IOException("Unable to retrieve response code from HttpUrlConnection.");
            }
            throw new IOException("Request failed " + statusCode + ": " + urlConnection.getResponseMessage());
        }
    }

    private InputStream getStreamForSuccessfulRequest(HttpURLConnection urlConnection)
            throws IOException {
        if (TextUtils.isEmpty(urlConnection.getContentEncoding())) {
            int contentLength = urlConnection.getContentLength();
            stream = ContentLengthInputStream.obtain(urlConnection.getInputStream(), contentLength);
        } else {
            if (Log.isLoggable(TAG, Log.DEBUG)) {
                Log.d(TAG, "Got non empty content encoding: " + urlConnection.getContentEncoding());
            }
            stream = urlConnection.getInputStream();
        }
        return stream;
    }

    ...
}

 

经过一层一层地跋山涉水,我们终于在这里找到网络通讯的代码了!之前有朋友跟我讲过,说Glide的源码实在是太复杂了,甚至连网络请求是在哪里发出去的都找不到。我们也是经过一段一段又一段的代码跟踪,终于把网络请求的代码给找出来了,实在是太不容易了。

不过也别高兴得太早,现在离*终分析完还早着呢。可以看到,loadData()方法只是返回了一个InputStream,服务器返回的数据连读都还没开始读呢。所以我们还是要静下心来继续分析,回到刚才ImageVideoFetcher的loadData()方法中,在这个方法的*后一行,创建了一个ImageVideoWrapper对象,并把刚才得到的InputStream作为参数传了进去。

然后我们回到再上一层,也就是DecodeJob的decodeSource()方法当中,在得到了这个ImageVideoWrapper对象之后,紧接着又将这个对象传入到了decodeFromSourceData()当中,来去解码这个对象。decodeFromSourceData()方法的代码如下所示:

private Resource<T> decodeFromSourceData(A data) throws IOException {
    final Resource<T> decoded;
    if (diskCacheStrategy.cacheSource()) {
        decoded = cacheAndDecodeSourceData(data);
    } else {
        long startTime = LogTime.getLogTime();
        decoded = loadProvider.getSourceDecoder().decode(data, width, height);
        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logWithTimeAndKey("Decoded from source", startTime);
        }
    }
    return decoded;
}

 

可以看到,这里在第7行调用了loadProvider.getSourceDecoder().decode()方法来进行解码。loadProvider就是刚才在onSizeReady()方法中得到的FixedLoadProvider,而getSourceDecoder()得到的则是一个GifBitmapWrapperResourceDecoder对象,也就是要调用这个对象的decode()方法来对图片进行解码。那么我们来看下GifBitmapWrapperResourceDecoder的代码:

public class GifBitmapWrapperResourceDecoder implements ResourceDecoder<ImageVideoWrapper, GifBitmapWrapper> {

    ...

    @SuppressWarnings("resource")
    // @see ResourceDecoder.decode
    @Override
    public Resource<GifBitmapWrapper> decode(ImageVideoWrapper source, int width, int height) throws IOException {
        ByteArrayPool pool = ByteArrayPool.get();
        byte[] tempBytes = pool.getBytes();
        GifBitmapWrapper wrapper = null;
        try {
            wrapper = decode(source, width, height, tempBytes);
        } finally {
            pool.releaseBytes(tempBytes);
        }
        return wrapper != null ? new GifBitmapWrapperResource(wrapper) : null;
    }

    private GifBitmapWrapper decode(ImageVideoWrapper source, int width, int height, byte[] bytes) throws IOException {
        final GifBitmapWrapper result;
        if (source.getStream() != null) {
            result = decodeStream(source, width, height, bytes);
        } else {
            result = decodeBitmapWrapper(source, width, height);
        }
        return result;
    }

    private GifBitmapWrapper decodeStream(ImageVideoWrapper source, int width, int height, byte[] bytes)
            throws IOException {
        InputStream bis = streamFactory.build(source.getStream(), bytes);
        bis.mark(MARK_LIMIT_BYTES);
        ImageHeaderParser.ImageType type = parser.parse(bis);
        bis.reset();
        GifBitmapWrapper result = null;
        if (type == ImageHeaderParser.ImageType.GIF) {
            result = decodeGifWrapper(bis, width, height);
        }
        // Decoding the gif may fail even if the type matches.
        if (result == null) {
            // We can only reset the buffered InputStream, so to start from the beginning of the stream, we need to
            // pass in a new source containing the buffered stream rather than the original stream.
            ImageVideoWrapper forBitmapDecoder = new ImageVideoWrapper(bis, source.getFileDescriptor());
            result = decodeBitmapWrapper(forBitmapDecoder, width, height);
        }
        return result;
    }

    private GifBitmapWrapper decodeBitmapWrapper(ImageVideoWrapper toDecode, int width, int height) throws IOException {
        GifBitmapWrapper result = null;
        Resource<Bitmap> bitmapResource = bitmapDecoder.decode(toDecode, width, height);
        if (bitmapResource != null) {
            result = new GifBitmapWrapper(bitmapResource, null);
        }
        return result;
    }

    ...
}

 

首先,在decode()方法中,又去调用了另外一个decode()方法的重载。然后在第23行调用了decodeStream()方法,准备从服务器返回的流当中读取数据。decodeStream()方法中会先从流中读取2个字节的数据,来判断这张图是GIF图还是普通的静图,如果是GIF图就调用decodeGifWrapper()方法来进行解码,如果是普通的静图就用调用decodeBitmapWrapper()方法来进行解码。这里我们只分析普通静图的实现流程,GIF图的实现有点过于复杂了,无法在本篇文章当中分析。

然后我们来看一下decodeBitmapWrapper()方法,这里在第52行调用了bitmapDecoder.decode()方法。这个bitmapDecoder是一个ImageVideoBitmapDecoder对象,那么我们来看一下它的代码,如下所示:

public class ImageVideoBitmapDecoder implements ResourceDecoder<ImageVideoWrapper, Bitmap> {
    private final ResourceDecoder<InputStream, Bitmap> streamDecoder;
    private final ResourceDecoder<ParcelFileDescriptor, Bitmap> fileDescriptorDecoder;

    public ImageVideoBitmapDecoder(ResourceDecoder<InputStream, Bitmap> streamDecoder,
            ResourceDecoder<ParcelFileDescriptor, Bitmap> fileDescriptorDecoder) {
        this.streamDecoder = streamDecoder;
        this.fileDescriptorDecoder = fileDescriptorDecoder;
    }

    @Override
    public Resource<Bitmap> decode(ImageVideoWrapper source, int width, int height) throws IOException {
        Resource<Bitmap> result = null;
        InputStream is = source.getStream();
        if (is != null) {
            try {
                result = streamDecoder.decode(is, width, height);
            } catch (IOException e) {
                if (Log.isLoggable(TAG, Log.VERBOSE)) {
                    Log.v(TAG, "Failed to load image from stream, trying FileDescriptor", e);
                }
            }
        }
        if (result == null) {
            ParcelFileDescriptor fileDescriptor = source.getFileDescriptor();
            if (fileDescriptor != null) {
                result = fileDescriptorDecoder.decode(fileDescriptor, width, height);
            }
        }
        return result;
    }

    ...
}

 

代码并不复杂,在第14行先调用了source.getStream()来获取到服务器返回的InputStream,然后在第17行调用streamDecoder.decode()方法进行解码。streamDecode是一个StreamBitmapDecoder对象,那么我们再来看这个类的源码,如下所示:

public class StreamBitmapDecoder implements ResourceDecoder<InputStream, Bitmap> {

    ...

    private final Downsampler downsampler;
    private BitmapPool bitmapPool;
    private DecodeFormat decodeFormat;

    public StreamBitmapDecoder(Downsampler downsampler, BitmapPool bitmapPool, DecodeFormat decodeFormat) {
        this.downsampler = downsampler;
        this.bitmapPool = bitmapPool;
        this.decodeFormat = decodeFormat;
    }

    @Override
    public Resource<Bitmap> decode(InputStream source, int width, int height) {
        Bitmap bitmap = downsampler.decode(source, bitmapPool, width, height, decodeFormat);
        return BitmapResource.obtain(bitmap, bitmapPool);
    }

    ...
}

可以看到,它的decode()方法又去调用了Downsampler的decode()方法。接下来又到了激动人心的时刻了,Downsampler的代码如下所示:

public abstract class Downsampler implements BitmapDecoder<InputStream> {

    ...

    @Override
    public Bitmap decode(InputStream is, BitmapPool pool, int outWidth, int outHeight, DecodeFormat decodeFormat) {
        final ByteArrayPool byteArrayPool = ByteArrayPool.get();
        final byte[] bytesForOptions = byteArrayPool.getBytes();
        final byte[] bytesForStream = byteArrayPool.getBytes();
        final BitmapFactory.Options options = getDefaultOptions();
        // Use to fix the mark limit to avoid allocating buffers that fit entire images.
        RecyclableBufferedInputStream bufferedStream = new RecyclableBufferedInputStream(
                is, bytesForStream);
        // Use to retrieve exceptions thrown while reading.
        // TODO(#126): when the framework no longer returns partially decoded Bitmaps or provides a way to determine
        // if a Bitmap is partially decoded, consider removing.
        ExceptionCatchingInputStream exceptionStream =
                ExceptionCatchingInputStream.obtain(bufferedStream);
        // Use to read data.
        // Ensures that we can always reset after reading an image header so that we can still attempt to decode the
        // full image even when the header decode fails and/or overflows our read buffer. See #283.
        MarkEnforcingInputStream invalidatingStream = new MarkEnforcingInputStream(exceptionStream);
        try {
            exceptionStream.mark(MARK_POSITION);
            int orientation = 0;
            try {
                orientation = new ImageHeaderParser(exceptionStream).getOrientation();
            } catch (IOException e) {
                if (Log.isLoggable(TAG, Log.WARN)) {
                    Log.w(TAG, "Cannot determine the image orientation from header", e);
                }
            } finally {
                try {
                    exceptionStream.reset();
                } catch (IOException e) {
                    if (Log.isLoggable(TAG, Log.WARN)) {
                        Log.w(TAG, "Cannot reset the input stream", e);
                    }
                }
            }
            options.inTempStorage = bytesForOptions;
            final int[] inDimens = getDimensions(invalidatingStream, bufferedStream, options);
            final int inWidth = inDimens[0];
            final int inHeight = inDimens[1];
            final int degreesToRotate = TransformationUtils.getExifOrientationDegrees(orientation);
            final int sampleSize = getRoundedSampleSize(degreesToRotate, inWidth, inHeight, outWidth, outHeight);
            final Bitmap downsampled =
                    downsampleWithSize(invalidatingStream, bufferedStream, options, pool, inWidth, inHeight, sampleSize,
                            decodeFormat);
            // BitmapFactory swallows exceptions during decodes and in some cases when inBitmap is non null, may catch
            // and log a stack trace but still return a non null bitmap. To avoid displaying partially decoded bitmaps,
            // we catch exceptions reading from the stream in our ExceptionCatchingInputStream and throw them here.
            final Exception streamException = exceptionStream.getException();
            if (streamException != null) {
                throw new RuntimeException(streamException);
            }
            Bitmap rotated = null;
            if (downsampled != null) {
                rotated = TransformationUtils.rotateImageExif(downsampled, pool, orientation);
                if (!downsampled.equals(rotated) && !pool.put(downsampled)) {
                    downsampled.recycle();
                }
            }
            return rotated;
        } finally {
            byteArrayPool.releaseBytes(bytesForOptions);
            byteArrayPool.releaseBytes(bytesForStream);
            exceptionStream.release();
            releaseOptions(options);
        }
    }

    private Bitmap downsampleWithSize(MarkEnforcingInputStream is, RecyclableBufferedInputStream  bufferedStream,
            BitmapFactory.Options options, BitmapPool pool, int inWidth, int inHeight, int sampleSize,
            DecodeFormat decodeFormat) {
        // Prior to KitKat, the inBitmap size must exactly match the size of the bitmap we're decoding.
        Bitmap.Config config = getConfig(is, decodeFormat);
        options.inSampleSize = sampleSize;
        options.inPreferredConfig = config;
        if ((options.inSampleSize == 1 || Build.VERSION_CODES.KITKAT <= Build.VERSION.SDK_INT) && shouldUsePool(is)) {
            int targetWidth = (int) Math.ceil(inWidth / (double) sampleSize);
            int targetHeight = (int) Math.ceil(inHeight / (double) sampleSize);
            // BitmapFactory will clear out the Bitmap before writing to it, so getDirty is safe.
            setInBitmap(options, pool.getDirty(targetWidth, targetHeight, config));
        }
        return decodeStream(is, bufferedStream, options);
    }

    /**
     * A method for getting the dimensions of an image from the given InputStream.
     *
     * @param is The InputStream representing the image.
     * @param options The options to pass to
     *          {@link BitmapFactory#decodeStream(InputStream, android.graphics.Rect,
     *              BitmapFactory.Options)}.
     * @return an array containing the dimensions of the image in the form {width, height}.
     */
    public int[] getDimensions(MarkEnforcingInputStream is, RecyclableBufferedInputStream bufferedStream,
            BitmapFactory.Options options) {
        options.inJustDecodeBounds = true;
        decodeStream(is, bufferedStream, options);
        options.inJustDecodeBounds = false;
        return new int[] { options.outWidth, options.outHeight };
    }

    private static Bitmap decodeStream(MarkEnforcingInputStream is, RecyclableBufferedInputStream bufferedStream,
            BitmapFactory.Options options) {
         if (options.inJustDecodeBounds) {
             // This is large, but jpeg headers are not size bounded so we need something large enough to minimize
             // the possibility of not being able to fit enough of the header in the buffer to get the image size so
             // that we don't fail to load images. The BufferedInputStream will create a new buffer of 2x the
             // original size each time we use up the buffer space without passing the mark so this is a maximum
             // bound on the buffer size, not a default. Most of the time we won't go past our pre-allocated 16kb.
             is.mark(MARK_POSITION);
         } else {
             // Once we've read the image header, we no longer need to allow the buffer to expand in size. To avoid
             // unnecessary allocations reading image data, we fix the mark limit so that it is no larger than our
             // current buffer size here. See issue #225.
             bufferedStream.fixMarkLimit();
         }
        final Bitmap result = BitmapFactory.decodeStream(is, null, options);
        try {
            if (options.inJustDecodeBounds) {
                is.reset();
            }
        } catch (IOException e) {
            if (Log.isLoggable(TAG, Log.ERROR)) {
                Log.e(TAG, "Exception loading inDecodeBounds=" + options.inJustDecodeBounds
                        + " sample=" + options.inSampleSize, e);
            }
        }

        return result;
    }

    ...
}

 

可以看到,对服务器返回的InputStream的读取,以及对图片的加载全都在这里了。当然这里其实处理了很多的逻辑,包括对图片的压缩,甚至还有旋转、圆角等逻辑处理,但是我们目前只需要关注主线逻辑就行了。decode()方法执行之后,会返回一个Bitmap对象,那么图片在这里其实也就已经被加载出来了,剩下的工作就是如果让这个Bitmap显示到界面上,我们继续往下分析。

回到刚才的StreamBitmapDecoder当中,你会发现,它的decode()方法返回的是一个Resource<Bitmap>对象。而我们从Downsampler中得到的是一个Bitmap对象,因此这里在第18行又调用了BitmapResource.obtain()方法,将Bitmap对象包装成了Resource<Bitmap>对象。代码如下所示:

public class BitmapResource implements Resource<Bitmap> {
    private final Bitmap bitmap;
    private final BitmapPool bitmapPool;

    /**
     * Returns a new {@link BitmapResource} wrapping the given {@link Bitmap} if the Bitmap is non-null or null if the
     * given Bitmap is null.
     *
     * @param bitmap A Bitmap.
     * @param bitmapPool A non-null {@link BitmapPool}.
     */
    public static BitmapResource obtain(Bitmap bitmap, BitmapPool bitmapPool) {
        if (bitmap == null) {
            return null;
        } else {
            return new BitmapResource(bitmap, bitmapPool);
        }
    }

    public BitmapResource(Bitmap bitmap, BitmapPool bitmapPool) {
        if (bitmap == null) {
            throw new NullPointerException("Bitmap must not be null");
        }
        if (bitmapPool == null) {
            throw new NullPointerException("BitmapPool must not be null");
        }
        this.bitmap = bitmap;
        this.bitmapPool = bitmapPool;
    }

    @Override
    public Bitmap get() {
        return bitmap;
    }

    @Override
    public int getSize() {
        return Util.getBitmapByteSize(bitmap);
    }

    @Override
    public void recycle() {
        if (!bitmapPool.put(bitmap)) {
            bitmap.recycle();
        }
    }
}

 

BitmapResource的源码也非常简单,经过这样一层包装之后,如果我还需要获取Bitmap,只需要调用Resource<Bitmap>的get()方法就可以了。

然后我们需要一层层继续向上返回,StreamBitmapDecoder会将值返回到ImageVideoBitmapDecoder当中,而ImageVideoBitmapDecoder又会将值返回到GifBitmapWrapperResourceDecoder的decodeBitmapWrapper()方法当中。由于代码隔得有点太远了,我重新把decodeBitmapWrapper()方法的代码贴一下:

private GifBitmapWrapper decodeBitmapWrapper(ImageVideoWrapper toDecode, int width, int height) throws IOException {
    GifBitmapWrapper result = null;
    Resource<Bitmap> bitmapResource = bitmapDecoder.decode(toDecode, width, height);
    if (bitmapResource != null) {
        result = new GifBitmapWrapper(bitmapResource, null);
    }
    return result;
}

 

可以看到,decodeBitmapWrapper()方法返回的是一个GifBitmapWrapper对象。因此,这里在第5行,又将Resource<Bitmap>封装到了一个GifBitmapWrapper对象当中。这个GifBitmapWrapper顾名思义,就是既能封装GIF,又能封装Bitmap,从而保证了不管是什么类型的图片Glide都能从容应对。我们顺便来看下GifBitmapWrapper的源码吧,如下所示:

public class GifBitmapWrapper {
    private final Resource<GifDrawable> gifResource;
    private final Resource<Bitmap> bitmapResource;

    public GifBitmapWrapper(Resource<Bitmap> bitmapResource, Resource<GifDrawable> gifResource) {
        if (bitmapResource != null && gifResource != null) {
            throw new IllegalArgumentException("Can only contain either a bitmap resource or a gif resource, not both");
        }
        if (bitmapResource == null && gifResource == null) {
            throw new IllegalArgumentException("Must contain either a bitmap resource or a gif resource");
        }
        this.bitmapResource = bitmapResource;
        this.gifResource = gifResource;
    }

    /**
     * Returns the size of the wrapped resource.
     */
    public int getSize() {
        if (bitmapResource != null) {
            return bitmapResource.getSize();
        } else {
            return gifResource.getSize();
        }
    }

    /**
     * Returns the wrapped {@link Bitmap} resource if it exists, or null.
     */
    public Resource<Bitmap> getBitmapResource() {
        return bitmapResource;
    }

    /**
     * Returns the wrapped {@link GifDrawable} resource if it exists, or null.
     */
    public Resource<GifDrawable> getGifResource() {
        return gifResource;
    }
}

 

还是比较简单的,就是分别对gifResource和bitmapResource做了一层封装而已,相信没有什么解释的必要。

然后这个GifBitmapWrapper对象会一直向上返回,返回到GifBitmapWrapperResourceDecoder*外层的decode()方法的时候,会对它再做一次封装,如下所示:

@Override
public Resource<GifBitmapWrapper> decode(ImageVideoWrapper source, int width, int height) throws IOException {
    ByteArrayPool pool = ByteArrayPool.get();
    byte[] tempBytes = pool.getBytes();
    GifBitmapWrapper wrapper = null;
    try {
        wrapper = decode(source, width, height, tempBytes);
    } finally {
        pool.releaseBytes(tempBytes);
    }
    return wrapper != null ? new GifBitmapWrapperResource(wrapper) : null;
}

 

可以看到,这里在第11行,又将GifBitmapWrapper封装到了一个GifBitmapWrapperResource对象当中,*终返回的是一个Resource<GifBitmapWrapper>对象。这个GifBitmapWrapperResource和刚才的BitmapResource是相似的,它们都实现的Resource接口,都可以通过get()方法来获取封装起来的具体内容。GifBitmapWrapperResource的源码如下所示:

public class GifBitmapWrapperResource implements Resource<GifBitmapWrapper> {
    private final GifBitmapWrapper data;

    public GifBitmapWrapperResource(GifBitmapWrapper data) {
        if (data == null) {
            throw new NullPointerException("Data must not be null");
        }
        this.data = data;
    }

    @Override
    public GifBitmapWrapper get() {
        return data;
    }

    @Override
    public int getSize() {
        return data.getSize();
    }

    @Override
    public void recycle() {
        Resource<Bitmap> bitmapResource = data.getBitmapResource();
        if (bitmapResource != null) {
            bitmapResource.recycle();
        }
        Resource<GifDrawable> gifDataResource = data.getGifResource();
        if (gifDataResource != null) {
            gifDataResource.recycle();
        }
    }

经过这一层的封装之后,我们从网络上得到的图片就能够以Resource接口的形式返回,并且还能同时处理Bitmap图片和GIF图片这两种情况。

那么现在我们可以回到DecodeJob当中了,它的decodeFromSourceData()方法返回的是一个Resource<T>对象,其实也就是Resource<GifBitmapWrapper>对象了。然后继续向上返回,*终返回到decodeFromSource()方法当中,如下所示:

public Resource<Z> decodeFromSource() throws Exception {
    Resource<T> decoded = decodeSource();
    return transformEncodeAndTranscode(decoded);
}

 

刚才我们就是从这里跟进到decodeSource()方法当中,然后执行了一大堆一大堆的逻辑,*终得到了这个Resource<T>对象。然而你会发现,decodeFromSource()方法*终返回的却是一个Resource<Z>对象,那么这到底是怎么回事呢?我们就需要跟进到transformEncodeAndTranscode()方法来瞧一瞧了,代码如下所示:

private Resource<Z> transformEncodeAndTranscode(Resource<T> decoded) {
    long startTime = LogTime.getLogTime();
    Resource<T> transformed = transform(decoded);
    if (Log.isLoggable(TAG, Log.VERBOSE)) {
        logWithTimeAndKey("Transformed resource from source", startTime);
    }
    writeTransformedToCache(transformed);
    startTime = LogTime.getLogTime();
    Resource<Z> result = transcode(transformed);
    if (Log.isLoggable(TAG, Log.VERBOSE)) {
        logWithTimeAndKey("Transcoded transformed from source", startTime);
    }
    return result;
}

private Resource<Z> transcode(Resource<T> transformed) {
    if (transformed == null) {
        return null;
    }
    return transcoder.transcode(transformed);
}

 

首先,这个方法开头的几行transform还有cache,这都是我们后面才会学习的东西,现在不用管它们就可以了。需要注意的是第9行,这里调用了一个transcode()方法,就把Resource<T>对象转换成Resource<Z>对象了。

而transcode()方法中又是调用了transcoder的transcode()方法,那么这个transcoder是什么呢?其实这也是Glide源码特别难懂的原因之一,就是它用到的很多对象都是很早很早之前就初始化的,在初始化的时候你可能完全就没有留意过它,因为一时半会根本就用不着,但是真正需要用到的时候你却早就记不起来这个对象是从哪儿来的了。

那么这里我来提醒一下大家吧,在第二步load()方法返回的那个DrawableTypeRequest对象,它的构建函数中去构建了一个FixedLoadProvider对象,然后我们将三个参数传入到了FixedLoadProvider当中,其中就有一个GifBitmapWrapperDrawableTranscoder对象。后来在onSizeReady()方法中获取到了这个参数,并传递到了Engine当中,然后又由Engine传递到了DecodeJob当中。因此,这里的transcoder其实就是这个GifBitmapWrapperDrawableTranscoder对象。那么我们来看一下它的源码:

public class GifBitmapWrapperDrawableTranscoder implements ResourceTranscoder<GifBitmapWrapper, GlideDrawable> {
    private final ResourceTranscoder<Bitmap, GlideBitmapDrawable> bitmapDrawableResourceTranscoder;

    public GifBitmapWrapperDrawableTranscoder(
            ResourceTranscoder<Bitmap, GlideBitmapDrawable> bitmapDrawableResourceTranscoder) {
        this.bitmapDrawableResourceTranscoder = bitmapDrawableResourceTranscoder;
    }

    @Override
    public Resource<GlideDrawable> transcode(Resource<GifBitmapWrapper> toTranscode) {
        GifBitmapWrapper gifBitmap = toTranscode.get();
        Resource<Bitmap> bitmapResource = gifBitmap.getBitmapResource();
        final Resource<? extends GlideDrawable> result;
        if (bitmapResource != null) {
            result = bitmapDrawableResourceTranscoder.transcode(bitmapResource);
        } else {
            result = gifBitmap.getGifResource();
        }
        return (Resource<GlideDrawable>) result;
    }

    ...
}

 

这里我来简单解释一下,GifBitmapWrapperDrawableTranscoder的核心作用就是用来转码的。因为GifBitmapWrapper是无法直接显示到ImageView上面的,只有Bitmap或者Drawable才能显示到ImageView上。因此,这里的transcode()方法先从Resource<GifBitmapWrapper>中取出GifBitmapWrapper对象,然后再从GifBitmapWrapper中取出Resource<Bitmap>对象。

接下来做了一个判断,如果Resource<Bitmap>为空,那么说明此时加载的是GIF图,直接调用getGifResource()方法将图片取出即可,因为Glide用于加载GIF图片是使用的GifDrawable这个类,它本身就是一个Drawable对象了。而如果Resource<Bitmap>不为空,那么就需要再做一次转码,将Bitmap转换成Drawable对象才行,因为要保证静图和动图的类型一致性,不然逻辑上是不好处理的。

这里在第15行又进行了一次转码,是调用的GlideBitmapDrawableTranscoder对象的transcode()方法,代码如下所示:

public class GlideBitmapDrawableTranscoder implements ResourceTranscoder<Bitmap, GlideBitmapDrawable> {
    private final Resources resources;
    private final BitmapPool bitmapPool;

    public GlideBitmapDrawableTranscoder(Context context) {
        this(context.getResources(), Glide.get(context).getBitmapPool());
    }

    public GlideBitmapDrawableTranscoder(Resources resources, BitmapPool bitmapPool) {
        this.resources = resources;
        this.bitmapPool = bitmapPool;
    }

    @Override
    public Resource<GlideBitmapDrawable> transcode(Resource<Bitmap> toTranscode) {
        GlideBitmapDrawable drawable = new GlideBitmapDrawable(resources, toTranscode.get());
        return new GlideBitmapDrawableResource(drawable, bitmapPool);
    }

    ...
}

 

可以看到,这里new出了一个GlideBitmapDrawable对象,并把Bitmap封装到里面。然后对GlideBitmapDrawable再进行一次封装,返回一个Resource<GlideBitmapDrawable>对象。

现在再返回到GifBitmapWrapperDrawableTranscoder的transcode()方法中,你会发现它们的类型就一致了。因为不管是静图的Resource<GlideBitmapDrawable>对象,还是动图的Resource<GifDrawable>对象,它们都是属于父类Resource<GlideDrawable>对象的。因此transcode()方法也是直接返回了Resource<GlideDrawable>,而这个Resource<GlideDrawable>其实也就是转换过后的Resource<Z>了。

那么我们继续回到DecodeJob当中,它的decodeFromSource()方法得到了Resource<Z>对象,当然也就是Resource<GlideDrawable>对象。然后继续向上返回会回到EngineRunnable的decodeFromSource()方法,再回到decode()方法,再回到run()方法当中。那么我们重新再贴一下EngineRunnable run()方法的源码:

@Override
public void run() {
    if (isCancelled) {
        return;
    }
    Exception exception = null;
    Resource<?> resource = null;
    try {
        resource = decode();
    } catch (Exception e) {
        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            Log.v(TAG, "Exception decoding", e);
        }
        exception = e;
    }
    if (isCancelled) {
        if (resource != null) {
            resource.recycle();
        }
        return;
    }
    if (resource == null) {
        onLoadFailed(exception);
    } else {
        onLoadComplete(resource);
    }
}

 

也就是说,经过第9行decode()方法的执行,我们*终得到了这个Resource<GlideDrawable>对象,那么接下来就是如何将它显示出来了。可以看到,这里在第25行调用了onLoadComplete()方法,表示图片加载已经完成了,代码如下所示:

private void onLoadComplete(Resource resource) {
    manager.onResourceReady(resource);
}

 

这个manager就是EngineJob对象,因此这里实际上调用的是EngineJob的onResourceReady()方法,代码如下所示:

class EngineJob implements EngineRunnable.EngineRunnableManager {

    private static final Handler MAIN_THREAD_HANDLER = new Handler(Looper.getMainLooper(), new MainThreadCallback());

    private final List<ResourceCallback> cbs = new ArrayList<ResourceCallback>();

    ...

    public void addCallback(ResourceCallback cb) {
        Util.assertMainThread();
        if (hasResource) {
            cb.onResourceReady(engineResource);
        } else if (hasException) {
            cb.onException(exception);
        } else {
            cbs.add(cb);
        }
    }

    @Override
    public void onResourceReady(final Resource<?> resource) {
        this.resource = resource;
        MAIN_THREAD_HANDLER.obtainMessage(MSG_COMPLETE, this).sendToTarget();
    }

    private void handleResultOnMainThread() {
        if (isCancelled) {
            resource.recycle();
            return;
        } else if (cbs.isEmpty()) {
            throw new IllegalStateException("Received a resource without any callbacks to notify");
        }
        engineResource = engineResourceFactory.build(resource, isCacheable);
        hasResource = true;
        engineResource.acquire();
        listener.onEngineJobComplete(key, engineResource);
        for (ResourceCallback cb : cbs) {
            if (!isInIgnoredCallbacks(cb)) {
                engineResource.acquire();
                cb.onResourceReady(engineResource);
            }
        }
        engineResource.release();
    }

    @Override
    public void onException(final Exception e) {
        this.exception = e;
        MAIN_THREAD_HANDLER.obtainMessage(MSG_EXCEPTION, this).sendToTarget();
    }

    private void handleExceptionOnMainThread() {
        if (isCancelled) {
            return;
        } else if (cbs.isEmpty()) {
            throw new IllegalStateException("Received an exception without any callbacks to notify");
        }
        hasException = true;
        listener.onEngineJobComplete(key, null);
        for (ResourceCallback cb : cbs) {
            if (!isInIgnoredCallbacks(cb)) {
                cb.onException(exception);
            }
        }
    }

    private static class MainThreadCallback implements Handler.Callback {

        @Override
        public boolean handleMessage(Message message) {
            if (MSG_COMPLETE == message.what || MSG_EXCEPTION == message.what) {
                EngineJob job = (EngineJob) message.obj;
                if (MSG_COMPLETE == message.what) {
                    job.handleResultOnMainThread();
                } else {
                    job.handleExceptionOnMainThread();
                }
                return true;
            }
            return false;
        }
    }

    ...
}

 

可以看到,这里在onResourceReady()方法使用Handler发出了一条MSG_COMPLETE消息,那么在MainThreadCallback的handleMessage()方法中就会收到这条消息。从这里开始,所有的逻辑又回到主线程当中进行了,因为很快就需要更新UI了。

然后在第72行调用了handleResultOnMainThread()方法,这个方法中又通过一个循环,调用了所有ResourceCallback的onResourceReady()方法。那么这个ResourceCallback是什么呢?答案在addCallback()方法当中,它会向cbs集合中去添加ResourceCallback。那么这个addCallback()方法又是哪里调用的呢?其实调用的地方我们早就已经看过了,只不过之前没有注意,现在重新来看一下Engine的load()方法,如下所示:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {

    ...    

    public <T, Z, R> LoadStatus load(Key signature, int width, int height, DataFetcher<T> fetcher,
            DataLoadProvider<T, Z> loadProvider, Transformation<Z> transformation, ResourceTranscoder<Z, R> transcoder, Priority priority, 
            boolean isMemoryCacheable, DiskCacheStrategy diskCacheStrategy, ResourceCallback cb) {

        ...

        EngineJob engineJob = engineJobFactory.build(key, isMemoryCacheable);
        DecodeJob<T, Z, R> decodeJob = new DecodeJob<T, Z, R>(key, width, height, fetcher, loadProvider, transformation,
                transcoder, diskCacheProvider, diskCacheStrategy, priority);
        EngineRunnable runnable = new EngineRunnable(engineJob, decodeJob, priority);
        jobs.put(key, engineJob);
        engineJob.addCallback(cb);
        engineJob.start(runnable);

        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logWithTimeAndKey("Started new load", startTime, key);
        }
        return new LoadStatus(cb, engineJob);
    }

    ...
}

 

这次把目光放在第18行上面,看到了吗?就是在这里调用的EngineJob的addCallback()方法来注册的一个ResourceCallback。那么接下来的问题就是,Engine.load()方法的ResourceCallback参数又是谁传过来的呢?这就需要回到GenericRequest的onSizeReady()方法当中了,我们看到ResourceCallback是load()方法的*后一个参数,那么在onSizeReady()方法中调用load()方法时传入的*后一个参数是什么?代码如下所示:

public final class GenericRequest<A, T, Z, R> implements Request, SizeReadyCallback,
        ResourceCallback {

    ...

    @Override
    public void onSizeReady(int width, int height) {
        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logV("Got onSizeReady in " + LogTime.getElapsedMillis(startTime));
        }
        if (status != Status.WAITING_FOR_SIZE) {
            return;
        }
        status = Status.RUNNING;
        width = Math.round(sizeMultiplier * width);
        height = Math.round(sizeMultiplier * height);
        ModelLoader<A, T> modelLoader = loadProvider.getModelLoader();
        final DataFetcher<T> dataFetcher = modelLoader.getResourceFetcher(model, width, height);
        if (dataFetcher == null) {
            onException(new Exception("Failed to load model: \'" + model + "\'"));
            return;
        }
        ResourceTranscoder<Z, R> transcoder = loadProvider.getTranscoder();
        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logV("finished setup for calling load in " + LogTime.getElapsedMillis(startTime));
        }
        loadedFromMemoryCache = true;
        loadStatus = engine.load(signature, width, height, dataFetcher, loadProvider, transformation, 
                transcoder, priority, isMemoryCacheable, diskCacheStrategy, this);
        loadedFromMemoryCache = resource != null;
        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logV("finished onSizeReady in " + LogTime.getElapsedMillis(startTime));
        }
    }

    ...
}

 

请将目光锁定在第29行的*后一个参数,this。没错,就是this。GenericRequest本身就实现了ResourceCallback的接口,因此EngineJob的回调*终其实就是回调到了GenericRequest的onResourceReady()方法当中了,代码如下所示:

public void onResourceReady(Resource<?> resource) {
    if (resource == null) {
        onException(new Exception("Expected to receive a Resource<R> with an object of " + transcodeClass
                + " inside, but instead got null."));
        return;
    }
    Object received = resource.get();
    if (received == null || !transcodeClass.isAssignableFrom(received.getClass())) {
        releaseResource(resource);
        onException(new Exception("Expected to receive an object of " + transcodeClass
                + " but instead got " + (received != null ? received.getClass() : "") + "{" + received + "}"
                + " inside Resource{" + resource + "}."
                + (received != null ? "" : " "
                    + "To indicate failure return a null Resource object, "
                    + "rather than a Resource object containing null data.")
        ));
        return;
    }
    if (!canSetResource()) {
        releaseResource(resource);
        // We can't set the status to complete before asking canSetResource().
        status = Status.COMPLETE;
        return;
    }
    onResourceReady(resource, (R) received);
}

private void onResourceReady(Resource<?> resource, R result) {
    // We must call isFirstReadyResource before setting status.
    boolean isFirstResource = isFirstReadyResource();
    status = Status.COMPLETE;
    this.resource = resource;
    if (requestListener == null || !requestListener.onResourceReady(result, model, target, loadedFromMemoryCache,
            isFirstResource)) {
        GlideAnimation<R> animation = animationFactory.build(loadedFromMemoryCache, isFirstResource);
        target.onResourceReady(result, animation);
    }
    notifyLoadSuccess();
    if (Log.isLoggable(TAG, Log.VERBOSE)) {
        logV("Resource ready in " + LogTime.getElapsedMillis(startTime) + " size: "
                + (resource.getSize() * TO_MEGABYTE) + " fromCache: " + loadedFromMemoryCache);
    }
}

 

这里有两个onResourceReady()方法,首先在*个onResourceReady()方法当中,调用resource.get()方法获取到了封装的图片对象,也就是GlideBitmapDrawable对象,或者是GifDrawable对象。然后将这个值传入到了第二个onResourceReady()方法当中,并在第36行调用了target.onResourceReady()方法。

那么这个target又是什么呢?这个又需要向上翻很久了,在第三步into()方法的一开始,我们就分析了在into()方法的*后一行,调用了glide.buildImageViewTarget()方法来构建出一个Target,而这个Target就是一个GlideDrawableImageViewTarget对象。

那么我们去看GlideDrawableImageViewTarget的源码就可以了,如下所示:

public class GlideDrawableImageViewTarget extends ImageViewTarget<GlideDrawable> {
    private static final float SQUARE_RATIO_MARGIN = 0.05f;
    private int maxLoopCount;
    private GlideDrawable resource;

    public GlideDrawableImageViewTarget(ImageView view) {
        this(view, GlideDrawable.LOOP_FOREVER);
    }

    public GlideDrawableImageViewTarget(ImageView view, int maxLoopCount) {
        super(view);
        this.maxLoopCount = maxLoopCount;
    }

    @Override
    public void onResourceReady(GlideDrawable resource, GlideAnimation<? super GlideDrawable> animation) {
        if (!resource.isAnimated()) {
            float viewRatio = view.getWidth() / (float) view.getHeight();
            float drawableRatio = resource.getIntrinsicWidth() / (float) resource.getIntrinsicHeight();
            if (Math.abs(viewRatio - 1f) <= SQUARE_RATIO_MARGIN
                    && Math.abs(drawableRatio - 1f) <= SQUARE_RATIO_MARGIN) {
                resource = new SquaringDrawable(resource, view.getWidth());
            }
        }
        super.onResourceReady(resource, animation);
        this.resource = resource;
        resource.setLoopCount(maxLoopCount);
        resource.start();
    }

    @Override
    protected void setResource(GlideDrawable resource) {
        view.setImageDrawable(resource);
    }

    @Override
    public void onStart() {
        if (resource != null) {
            resource.start();
        }
    }

    @Override
    public void onStop() {
        if (resource != null) {
            resource.stop();
        }
    }
}

 

在GlideDrawableImageViewTarget的onResourceReady()方法中做了一些逻辑处理,包括如果是GIF图片的话,就调用resource.start()方法开始播放图片,但是好像并没有看到哪里有将GlideDrawable显示到ImageView上的逻辑。

确实没有,不过父类里面有,这里在第25行调用了super.onResourceReady()方法,GlideDrawableImageViewTarget的父类是ImageViewTarget,我们来看下它的代码吧:

public abstract class ImageViewTarget<Z> extends ViewTarget<ImageView, Z> implements GlideAnimation.ViewAdapter {

    ...

    @Override
    public void onResourceReady(Z resource, GlideAnimation<? super Z> glideAnimation) {
        if (glideAnimation == null || !glideAnimation.animate(resource, this)) {
            setResource(resource);
        }
    }

    protected abstract void setResource(Z resource);

}

 

可以看到,在ImageViewTarget的onResourceReady()方法当中调用了setResource()方法,而ImageViewTarget的setResource()方法是一个抽象方法,具体的实现还是在子类那边实现的。

那子类的setResource()方法是怎么实现的呢?回头再来看一下GlideDrawableImageViewTarget的setResource()方法,没错,调用的view.setImageDrawable()方法,而这个view就是ImageView。代码执行到这里,图片终于也就显示出来了。

那么,我们对Glide执行流程的源码分析,到这里也终于结束了。

总结

真是好长的一篇文章,这也可能是我目前所写过的*长的一篇文章了。如果你之前没有读过Glide的源码,真的很难相信,这短短一行代码:

Glide.with(this).load(url).into(imageView);

背后竟然蕴藏着如此*其复杂的逻辑吧?

不过Glide也并不是有意要将代码写得如此复杂,实在是因为Glide的功能太强大了,而上述代码只是使用了Glide**基本的功能而已。

现在通过两篇文章,我们已经掌握了Glide的基本用法,并且通过阅读源码了解了Glide总的执行流程。接下来的几篇文章,我会带大家深入到Glide源码的某一处细节,学习Glide更多的高级使用技巧,感兴趣的朋友请继续阅读 Android图片加载框架*全解析(三)深入探究Glide的缓存机制

Android图片加载框架*全解析(一)Glide的基本用法

现在Android上的图片加载框架非常成熟,从*早的老牌图片加载框架UniversalImageLoader,到后来Google推出的Volley,再到后来的新兴军Glide和Picasso,当然还有Facebook的Fresco。每一个都非常稳定,功能也都十分强大。但是它们的使用场景基本都是重合的,也就是说我们基本只需要选择其中一个来进行学习和使用就足够了,每一个框架都尝试去掌握的话则有些浪费时间。

在这几个框架当中,我对Volley和Glide研究得比较深入,对UniversalImageLoader、Picasso和Fresco都只是有一些基本的了解。从易用性上来讲,Glide和Picasso应该都是完胜其他框架的,这两个框架都实在是太简单好用了,大多数情况下加载图片都是一行代码就能解决的,而UniversalImageLoader和Fresco则在这方面略逊一些。

那么再拿Glide和Picasso对比呢,首先这两个框架的用法非常相似,但其实它们各有特色。Picasso比Glide更加简洁和轻量,Glide比Picasso功能更为丰富。之前已经有人对这两个框架进行过全方面的对比。

总之,没有*好的框架,只有*适合自己的框架。经过多方面对比之后,我还是决定选择了Glide来进行研究,并且这也是Google官方推荐的图片加载框架。

说实话,关于Glide的文章我已经筹备了好久,去年这个时候本来就打算要写了,但是一直都没有动笔。因为去年我的大部分时间都放在了写《第二行代码》上面,只能用碎片时间来写写博客,但是Glide的难度远超出了我用碎片时间所能掌握的难度。当然,这里我说的是对它的源码进行解析的难度,不是使用上的难度,Glide的用法是很简单的。所以,我觉得去年我写不好Glide这个题材的文章,也就一直拖到了今年。

而现在,我花费了大量的精力去研究Glide的源码和各种用法,相信现在已经可以将它非常好地掌握了,因此我准备将我掌握的这些知识整理成一个新的系列,帮忙大家更好地学习Glide。这个Glide系列大概会有8篇左右文章,预计花半年时间写完,将会包括Glide的基本用法、源码解析、高级用法、功能扩展等内容,可能会是目前互联网上*详尽的Glide教程。

那么本篇文章是这个系列的*篇文章,我们先来了解一下Glide的基本用法吧。

开始

Glide是一款由Bump Technologies开发的图片加载框架,使得我们可以在Android平台上以*度简单的方式加载和展示图片。

目前,Glide*新的稳定版本是3.7.0,虽然4.0已经推出RC版了,但是暂时问题还比较多。因此,我们这个系列的博客都会使用Glide 3.7.0版本来进行讲解,这个版本的Glide相当成熟和稳定。

要想使用Glide,首先需要将这个库引入到我们的项目当中。新建一个GlideTest项目,然后在app/build.gradle文件当中添加如下依赖:

dependencies {
    compile 'com.github.bumptech.glide:glide:3.7.0'
}

 

如果你还在使用Eclipse,可以点击 这里 下载Glide的jar包。

另外,Glide中需要用到网络功能,因此你还得在AndroidManifest.xml中声明一下网络权限才行:

<uses-permission android:name="android.permission.INTERNET" />

 

就是这么简单,然后我们就可以自由地使用Glide中的任意功能了。

加载图片

现在我们就来尝试一下如何使用Glide来加载图片吧。比如这是必应上一张首页美图的地址:

http://cn.bing.com/az/hprichbg/rb/Dongdaemun_ZH-CN10736487148_1920x1080.jpg
  • 1

然后我们想要在程序当中去加载这张图片。

那么首先打开项目的布局文件,在布局当中加入一个Button和一个ImageView,如下所示:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:orientation="vertical">

    <Button
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="Load Image"
        android:onClick="loadImage"
        />

    <ImageView
        android:id="@+id/image_view"
        android:layout_width="match_parent"
        android:layout_height="match_parent" />

</LinearLayout>

 

为了让用户点击Button的时候能够将刚才的图片显示在ImageView上,我们需要修改MainActivity中的代码,如下所示:

public class MainActivity extends AppCompatActivity {

    ImageView imageView;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        imageView = (ImageView) findViewById(R.id.image_view);
    }

    public void loadImage(View view) {
        String url = "http://cn.bing.com/az/hprichbg/rb/Dongdaemun_ZH-CN10736487148_1920x1080.jpg";
        Glide.with(this).load(url).into(imageView);
    }

}

 

没错,就是这么简单。现在我们来运行一下程序,效果如下图所示:

%title插图%num可以看到,一张网络上的图片已经被成功下载,并且展示到ImageView上了。

而我们到底做了什么?实际上核心的代码就只有这一行而已:

Glide.with(this).load(url).into(imageView);
  • 1

千万不要小看这一行代码,实际上仅仅就这一行代码,你已经可以做非常非常多的事情了,包括加载网络上的图片、加载手机本地的图片、加载应用资源中的图片等等。

下面我们就来详细解析一下这行代码。

首先,调用Glide.with()方法用于创建一个加载图片的实例。with()方法可以接收Context、Activity或者Fragment类型的参数。也就是说我们选择的范围非常广,不管是在Activity还是Fragment中调用with()方法,都可以直接传this。那如果调用的地方既不在Activity中也不在Fragment中呢?也没关系,我们可以获取当前应用程序的ApplicationContext,传入到with()方法当中。注意with()方法中传入的实例会决定Glide加载图片的生命周期,如果传入的是Activity或者Fragment的实例,那么当这个Activity或Fragment被销毁的时候,图片加载也会停止。如果传入的是ApplicationContext,那么只有当应用程序被杀掉的时候,图片加载才会停止。

接下来看一下load()方法,这个方法用于指定待加载的图片资源。Glide支持加载各种各样的图片资源,包括网络图片、本地图片、应用资源、二进制流、Uri对象等等。因此load()方法也有很多个方法重载,除了我们刚才使用的加载一个字符串网址之外,你还可以这样使用load()方法:

// 加载本地图片
File file = new File(getExternalCacheDir() + "/image.jpg");
Glide.with(this).load(file).into(imageView);

// 加载应用资源
int resource = R.drawable.image;
Glide.with(this).load(resource).into(imageView);

// 加载二进制流
byte[] image = getImageBytes();
Glide.with(this).load(image).into(imageView);

// 加载Uri对象
Uri imageUri = getImageUri();
Glide.with(this).load(imageUri).into(imageView);

 

*后看一下into()方法,这个方法就很简单了,我们希望让图片显示在哪个ImageView上,把这个ImageView的实例传进去就可以了。当然,into()方法不仅仅是只能接收ImageView类型的参数,还支持很多更丰富的用法,不过那个属于高级技巧,我们会在后面的文章当中学习。

那么回顾一下Glide*基本的使用方式,其实就是关键的三步走:先with(),再load(),*后into()。熟记这三步,你就已经入门Glide了。

占位图

现在我们来学一些Glide的扩展内容。其实刚才所学的三步走就是Glide*核心的东西,而我们后面所要学习的所有东西都是在这个三步走的基础上不断进行扩展而已。

观察刚才加载网络图片的效果,你会发现,点击了Load Image按钮之后,要稍微等一会图片才会显示出来。这其实很容易理解,因为从网络上下载图片本来就是需要时间的。那么我们有没有办法再优化一下用户体验呢?当然可以,Glide提供了各种各样非常丰富的API支持,其中就包括了占位图功能。

顾名思义,占位图就是指在图片的加载过程中,我们先显示一张临时的图片,等图片加载出来了再替换成要加载的图片。

下面我们就来学习一下Glide占位图功能的使用方法,首先我事先准备好了一张loading.jpg图片,用来作为占位图显示。然后修改Glide加载部分的代码,如下所示:

Glide.with(this)
     .load(url)
     .placeholder(R.drawable.loading)
     .into(imageView);

 

没错,就是这么简单。我们只是在刚才的三步走之间插入了一个placeholder()方法,然后将占位图片的资源id传入到这个方法中即可。另外,这个占位图的用法其实也演示了Glide当中*大多数API的用法,其实就是在load()和into()方法之间串接任意想添加的功能就可以了。

不过如果你现在重新运行一下代码并点击Load Image,很可能是根本看不到占位图效果的。因为Glide有非常强大的缓存机制,我们刚才加载那张必应美图的时候Glide自动就已经将它缓存下来了,下次加载的时候将会直接从缓存中读取,不会再去网络下载了,因而加载的速度非常快,所以占位图可能根本来不及显示。

因此这里我们还需要稍微做一点修改,来让占位图能有机会显示出来,修改代码如下所示:

Glide.with(this)
     .load(url)
     .placeholder(R.drawable.loading)
     .diskCacheStrategy(DiskCacheStrategy.NONE)
     .into(imageView);

 

可以看到,这里串接了一个diskCacheStrategy()方法,并传入DiskCacheStrategy.NONE参数,这样就可以禁用掉Glide的缓存功能。

关于Glide缓存方面的内容我们将会在后面的文章进行详细的讲解,这里只是为了测试占位图功能而加的一个额外配置,暂时你只需要知道禁用缓存必须这么写就可以了。

现在重新运行一下代码,效果如下图所示:

%title插图%num可以看到,当点击Load Image按钮之后会立即显示一张占位图,然后等真正的图片加载完成之后会将占位图替换掉。

当然,这只是占位图的一种,除了这种加载占位图之外,还有一种异常占位图。异常占位图就是指,如果因为某些异常情况导致图片加载失败,比如说手机网络信号不好,这个时候就显示这张异常占位图。

异常占位图的用法相信你已经可以猜到了,首先准备一张error.jpg图片,然后修改Glide加载部分的代码,如下所示:

Glide.with(this)
     .load(url)
     .placeholder(R.drawable.loading)
     .error(R.drawable.error)
     .diskCacheStrategy(DiskCacheStrategy.NONE)
     .into(imageView);

 

很简单,这里又串接了一个error()方法就可以指定异常占位图了。

现在你可以将图片的url地址修改成一个不存在的图片地址,或者干脆直接将手机的网络给关了,然后重新运行程序,效果如下图所示:

%title插图%num这样我们就把Glide提供的占位图功能都掌握了。

指定图片格式

我们还需要再了解一下Glide另外一个强大的功能,那就是Glide是支持加载GIF图片的。这一点确实非常牛逼,因为相比之下Jake Warton曾经明确表示过,Picasso是不会支持加载GIF图片的。

而使用Glide加载GIF图并不需要编写什么额外的代码,Glide内部会自动判断图片格式。比如这是一张GIF图片的URL地址:

http://p1.pstatp.com/large/166200019850062839d3
  • 1

我们只需要将刚才那段加载图片代码中的URL地址替换成上面的地址就可以了,现在重新运行一下代码,效果如下图所示:

%title插图%num也就是说,不管我们传入的是一张普通图片,还是一张GIF图片,Glide都会自动进行判断,并且可以正确地把它解析并展示出来。

但是如果我想指定图片的格式该怎么办呢?就比如说,我希望加载的这张图必须是一张静态图片,我不需要Glide自动帮我判断它到底是静图还是GIF图。

想实现这个功能仍然非常简单,我们只需要再串接一个新的方法就可以了,如下所示:

Glide.with(this)
     .load(url)
     .asBitmap()
     .placeholder(R.drawable.loading)
     .error(R.drawable.error)
     .diskCacheStrategy(DiskCacheStrategy.NONE)
     .into(imageView);

 

可以看到,这里在load()方法的后面加入了一个asBitmap()方法,这个方法的意思就是说这里只允许加载静态图片,不需要Glide去帮我们自动进行图片格式的判断了。

现在重新运行一下程序,效果如下图所示:

%title插图%num由于调用了asBitmap()方法,现在GIF图就无法正常播放了,而是会在界面上显示*帧的图片。

那么类似地,既然我们能强制指定加载静态图片,就也能强制指定加载动态图片。比如说我们想要实现必须加载动态图片的功能,就可以这样写:

Glide.with(this)
     .load(url)
     .asGif()
     .placeholder(R.drawable.loading)
     .error(R.drawable.error)
     .diskCacheStrategy(DiskCacheStrategy.NONE)
     .into(imageView);

 

这里调用了asGif()方法替代了asBitmap()方法,很好理解,相信不用我多做什么解释了。

那么既然指定了只允许加载动态图片,如果我们传入了一张静态图片的URL地址又会怎么样呢?试一下就知道了,将图片的URL地址改成刚才的必应美图,然后重新运行代码,效果如下图所示。

%title插图%num没错,如果指定了只能加载动态图片,而传入的图片却是一张静图的话,那么结果自然就只有加载失败喽。

指定图片大小

实际上,使用Glide在*大多数情况下我们都是不需要指定图片大小的。

在学习本节内容之前,你可能还需要先了解一个概念,就是我们平时在加载图片的时候很容易会造成内存浪费。什么叫内存浪费呢?比如说一张图片的尺寸是1000*1000像素,但是我们界面上的ImageView可能只有200*200像素,这个时候如果你不对图片进行任何压缩就直接读取到内存中,这就属于内存浪费了,因为程序中根本就用不到这么高像素的图片。

而使用Glide,我们就完全不用担心图片内存浪费,甚至是内存溢出的问题。因为Glide从来都不会直接将图片的完整尺寸全部加载到内存中,而是用多少加载多少。Glide会自动判断ImageView的大小,然后只将这么大的图片像素加载到内存当中,帮助我们节省内存开支。

当然,Glide也并没有使用什么神奇的魔法,它内部的实现原理其实就是上面那篇文章当中介绍的技术,因此掌握了*基本的实现原理,你也可以自己实现一套这样的图片压缩机制。

也正是因为Glide是如此的智能,所以刚才在开始的时候我就说了,在*大多数情况下我们都是不需要指定图片大小的,因为Glide会自动根据ImageView的大小来决定图片的大小。

不过,如果你真的有这样的需求,必须给图片指定一个固定的大小,Glide仍然是支持这个功能的。修改Glide加载部分的代码,如下所示:

Glide.with(this)
     .load(url)
     .placeholder(R.drawable.loading)
     .error(R.drawable.error)
     .diskCacheStrategy(DiskCacheStrategy.NONE)
     .override(100, 100)
     .into(imageView);

 

仍然非常简单,这里使用override()方法指定了一个图片的尺寸,也就是说,Glide现在只会将图片加载成100*100像素的尺寸,而不会管你的ImageView的大小是多少了。

好了,今天是我们这个Glide系列的*篇文章,写了这么多内容已经算是挺不错的了。现在你已经了解了Glide的基本用法,当然也是一些*常用的用法。下一篇文章当中,我们会尝试去分析Glide的源码,研究一下在这些基本用法的背后,Glide到底执行了什么神奇的操作,能够使得我们加载图片变得这么简单?

Google推荐的图片加载库Glide介绍

在泰国举行的谷歌开发者论坛上,谷歌为我们介绍了一个名叫 Glide 的图片加载库,作者是bumptech。这个库被广泛的运用在google的开源项目中,包括2014年google I/O大会上发布的官方app。

它的成功让我非常感兴趣。我花了一整晚的时间把玩,决定分享一些自己的经验。在开始之前我想说,Glide和Picasso有90%的相似度,准确的说,就是Picasso的克隆版本。但是在细节上还是有不少区别的。

导入库

Picasso和Glide都在jcenter上。在项目中添加依赖非常简单:

Picasso

  1. dependencies {
  2.     compile ‘com.squareup.picasso:picasso:2.5.1’
  3. }

Glide

  1. dependencies {
  2.     compile ‘com.github.bumptech.glide:glide:3.5.2’
  3.     compile ‘com.android.support:support-v4:22.0.0’
  4. }

Glide需要依赖Support Library v4,别忘了。其实Support Library v4已经是应用程序的标配了,这不是什么问题。

基础

就如我所说的Glide和Picasso非常相似,Glide加载图片的方法和Picasso如出一辙。

Picasso

  1. Picasso.with(context)
  2.     .load(“http://inthecheesefactory.com/uploads/source/glidepicasso/cover.jpg”)
  3.     .into(ivImg);

Glide

  1. Glide.with(context)
  2.     .load(“http://inthecheesefactory.com/uploads/source/glidepicasso/cover.jpg”)
  3.     .into(ivImg);

虽然两者看起来一样,但是Glide更易用,因为Glide的with方法不光接受Context,还接受Activity 和 Fragment,Context会自动的从他们获取。

with

同 时将Activity/Fragment作为with()参数的好处是:图片加载会和Activity/Fragment的生命周期保持一致,比如在Paused状态暂停加载,在Resumed的时候又自动重新加载。所以我建议传参的时候传递Activity 和 Fragment给Glide,而不是Context。

默认Bitmap格式是RGB_565

下面是加载图片时和Picasso的比较(1920×1080 像素的图片加载到768×432的ImageView中)

firstload

可以看到Glide加载的图片质量要差于Picasso(ps:我看不出来哈),为什么?这是因为Glide默认的Bitmap格式是RGB_565 ,比ARGB_8888格式的内存开销要小一半。下面是Picasso在ARGB8888下与Glide在RGB565下的内存开销图(应用自身占用了8m,因此以8为基准线比较):

ram1_1

如果你对默认的RGB_565效果还比较满意,可以不做任何事,但是如果你觉得难以接受,可以创建一个新的GlideModule将Bitmap格式转换到ARGB_8888

  1. public class GlideConfiguration implements GlideModule {
  2.  
  3.     @Override
  4.     public void applyOptions(Context context, GlideBuilder builder) {
  5.         // Apply options to the builder here.
  6.         builder.setDecodeFormat(DecodeFormat.PREFER_ARGB_8888);
  7.     }
  8.  
  9.     @Override
  10.     public void registerComponents(Context context, Glide glide) {
  11.         // register ModelLoaders here.
  12.     }
  13. }

同时在AndroidManifest.xml中将GlideModule定义为meta-data

  1. <meta-data android:name=“com.inthecheesefactory.lab.glidepicasso.GlideConfiguration”
  2.             android:value=“GlideModule”/>

quality2

这样看起来就会好很多。

我们再来看看内存开销图,这次貌似Glide花费了两倍于上次的内存,但是Picasso的内存开销仍然远大于Glide。

ram2_1

原因在于Picasso是加载了全尺寸的图片到内存,然后让GPU来实时重绘大小。而Glide加载的大小和ImageView的大小是一致的,因此更小。当然,Picasso也可以指定加载的图片大小的:

  1. Picasso.with(this)
  2.     .load(“http://nuuneoi.com/uploads/source/playstore/cover.jpg”)
  3.     .resize(768, 432)
  4.     .into(ivImgPicasso);

但是问题在于你需要主动计算ImageView的大小,或者说你的ImageView大小是具体的值(而不是wrap_content),你也可以这样:

  1. Picasso.with(this)
  2.     .load(“http://nuuneoi.com/uploads/source/playstore/cover.jpg”)
  3.     .fit()
  4.     .centerCrop()
  5.     .into(ivImgPicasso);

现在Picasso的内存开销就和Glide差不多了。

memory3

虽然内存开销差距不到,但是在这个问题上Glide完胜Picasso。因为Glide可以自动计算出任意情况下的ImageView大小。

Image质量的细节

这是将ImageView还原到真实大小时的比较。

quality3

你可以看到,Glide加载的图片没有Picasso那么平滑,我还没有找到一个可以直观改变图片大小调整算法的方法。

但是这并不算什么坏事,因为很难察觉。

 

磁盘缓存

Picasso和Glide在磁盘缓存策略上有很大的不同。Picasso缓存的是全尺寸的,而Glide缓存的是跟ImageView尺寸相同的。

 

cache

上面提到的平滑度的问题依然存在,而且如果加载的是RGB565图片,那么缓存中的图片也是RGB565。

 

我 尝试将ImageView调整成不同大小,但不管大小如何Picasso只缓存一个全尺寸的。Glide则不同,它会为每种大小的ImageView缓存 一次。尽管一张图片已经缓存了一次,但是假如你要在另外一个地方再次以不同尺寸显示,需要重新下载,调整成新尺寸的大小,然后将这个尺寸的也缓存起来。

具体说来就是:假如在*个页面有一个200×200的ImageView,在第二个页面有一个100×100的ImageView,这两个ImageView本来是要显示同一张图片,却需要下载两次。

不过,你可以改变这种行为,让Glide既缓存全尺寸又缓存其他尺寸:

  1. Glide.with(this)
  2.      .load(“http://nuuneoi.com/uploads/source/playstore/cover.jpg”)
  3.      .diskCacheStrategy(DiskCacheStrategy.ALL)
  4.      .into(ivImgGlide);

下次在任何ImageView中加载图片的时候,全尺寸的图片将从缓存中取出,重新调整大小,然后缓存。

Glide的这种方式优点是加载显示非常快。而Picasso的方式则因为需要在显示之前重新调整大小而导致一些延迟,即便你添加了这段代码来让其立即显示:

  1. //Picasso
  2. .noFade();

loading3

 

Picasso和Glide各有所长,你根据自己的需求选择合适的。

对我而言,我更喜欢Glide,因为它远比Picasso快,虽然需要更大的空间来缓存。

特性

你可以做到几乎和Picasso一样多的事情,代码也几乎一样。

Image Resizing

  1. // Picasso
  2. .resize(300, 200);
  3.  
  4. // Glide
  5. .override(300, 200);

Center Cropping

  1. // Picasso
  2. .centerCrop();
  3.  
  4. // Glide
  5. .centerCrop();

Transforming

  1. // Picasso
  2. .transform(new CircleTransform())
  3.  
  4. // Glide
  5. .transform(new CircleTransform(context))

设置占位图或者加载错误图:

  1. // Picasso
  2. .placeholder(R.drawable.placeholder)
  3. .error(R.drawable.imagenotfound)
  4.  
  5. // Glide
  6. .placeholder(R.drawable.placeholder)
  7. .error(R.drawable.imagenotfound)

几乎和Picasso一样,从Picasso转换到Glide对你来说就是小菜一碟。

 

有什么Glide可以做而Picasso 做不到

Glide可以加载GIF动态图,而Picasso不能。

gifanimation2

 

同时因为Glide和Activity/Fragment的生命周期是一致的,因此gif的动画也会自动的随着Activity/Fragment的状态暂停、重放。Glide 的缓存在gif这里也是一样,调整大小然后缓存。

但是从我的一次测试结果来看Glide 动画会消费太多的内存,因此谨慎使用。

除了gif动画之外,Glide还可以将任何的本地视频解码成一张静态图片。

还有一个特性是你可以配置图片显示的动画,而Picasso只有一种动画:fading in。

*后一个是可以使用thumbnail()产生一个你所加载图片的thumbnail。

其实还有一些特性,不过不是非常重要,比如将图像转换成字节数组等。

配置

有许多可以配置的选项,比如大小,缓存的磁盘位置,*大缓存空间,位图格式等等。可以在这个页面查看这些配置 Configuration

库的大小

Picasso (v2.5.1)的大小约118kb,而Glide (v3.5.2)的大小约430kb。

librarysize

Anyway 312KB difference might not be that significant.

不过312kb的差距并不是很重要。

Picasso和Glide的方法个数分别是840和2678个。

methodcount

必须指出,对于DEX文件65535个方法的限制来说,2678是一个相当大的数字了。建议在使用Glide的时候开启ProGuard。

 

总结

Glide和Picasso都是非常完美的库。Glide加载图像以及磁盘缓存的方式都要优于Picasso,速度更快,并且Glide更有利于减少OutOfMemoryError的发生,GIF动画是Glide的杀手锏。不过Picasso的图片质量更高。你更喜欢哪个呢?

虽然我使用了很长时间的Picasso,但是我得承认现在我更喜欢Glide。我的建议是使用Glide,但是将Bitmap格式换成 ARGB_8888、让Glide缓存同时缓存全尺寸和改变尺寸两种。

友情链接: SITEMAP | 旋风加速器官网 | 旋风软件中心 | textarea | 黑洞加速器 | jiaohess | 老王加速器 | 烧饼哥加速器 | 小蓝鸟 | tiktok加速器 | 旋风加速度器 | 旋风加速 | quickq加速器 | 飞驰加速器 | 飞鸟加速器 | 狗急加速器 | hammer加速器 | trafficace | 原子加速器 | 葫芦加速器 | 麦旋风 | 油管加速器 | anycastly | INS加速器 | INS加速器免费版 | 免费vqn加速外网 | 旋风加速器 | 快橙加速器 | 啊哈加速器 | 迷雾通 | 优途加速器 | 海外播 | 坚果加速器 | 海外vqn加速 | 蘑菇加速器 | 毛豆加速器 | 接码平台 | 接码S | 西柚加速器 | 快柠檬加速器 | 黑洞加速 | falemon | 快橙加速器 | anycast加速器 | ibaidu | moneytreeblog | 坚果加速器 | 派币加速器 | 飞鸟加速器 | 毛豆APP | PIKPAK | 安卓vqn免费 | 一元机场加速器 | 一元机场 | 老王加速器 | 黑洞加速器 | 白石山 | 小牛加速器 | 黑洞加速 | 迷雾通官网 | 迷雾通 | 迷雾通加速器 | 十大免费加速神器 | 猎豹加速器 | 蚂蚁加速器 | 坚果加速器 | 黑洞加速 | 银河加速器 | 猎豹加速器 | 海鸥加速器 | 芒果加速器 | 小牛加速器 | 极光加速器 | 黑洞加速 | movabletype中文网 | 猎豹加速器官网 | 烧饼哥加速器官网 | 旋风加速器度器 | 哔咔漫画 | PicACG | 雷霆加速