日常代码工具(快速索引)

Go for it!
1. 机器学习
1.1 Pytorch
1.1.1 分类器训练函数
1.1.2 分类器测试函数
1.1.3 通用训练组件
1.2 numpy
1.2.1 匈牙利算法进行目标追踪(bbox中心点距离作为特征)
1.3 结果评估
1.3.1 Confusion Matrix
1. 机器学习
1.1 Pytorch
1.1.1 分类器训练函数
from tqdm import tqdm

def train(model, device, epoch, train_loader, optimizer, loss_func):
model.train().to(device)
train_loss = 0
for batch_idx, (data, target) in enumerate(tqdm(train_loader, ascii = True)):
data, target = data.to(device), target.to(device).long()
optimizer.zero_grad()
output = model(data)
loss = loss_func(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()

print(“Train epoch {}, loss:{:.4f}, “.format(epoch, train_loss))

1.1.2 分类器测试函数
from tqdm import tqdm

def test(model, device, test_loader):
model.eval().to(device)
count = 0
for batch_idx, (data, target) in enumerate(tqdm(test_loader, ascii = True)):
data, target = data.to(device), target.to(device)
output = model(data)
_, label = torch.max(output, dim=-1)
count += (label == target).sum()

print(“Acc:{:.4f}”.format(count.item()*100.0/len(test_loader.dataset)))

1.1.3 通用训练组件
from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn

def main():
batch_size = 70
learning_rate = 0.001
epoch_num = 100
labels = [‘A’,’B’,’C’,’D’]

dataset = Mydataset(is_train = True)
test_dataset = Mydataset(is_train = False)

train_loader = DataLoader(dataset,batch_size=batch_size,shuffle = True)
test_loader = DataLoader(test_dataset,batch_size=batch_size,shuffle = False)
model = MODEL()

if os.path.exists(‘./model.pkl’):
model.load_state_dict(torch.load(‘./model.pkl’,map_location = device)[‘weights’])
print(“load model sucessfully”)

adam = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.StepLR(adam, step_size=2, gamma=0.9)

loss_func = nn.CrossEntropyLoss()

for epoch in range(1, epoch_num+1):
test(model,device,test_loader)
train(model, device,train_loader,adam,loss_func,epoch,output_dim)
scheduler.step()
model_dict = {
“labels”:labels,
‘weights’:model.state_dict(),
}
torch.save(model_dict, “model.pkl”)

1.2 numpy
1.2.1 匈牙利算法进行目标追踪(bbox中心点距离作为特征)
import numpy as np
from scipy.optimize import linear_sum_assignment

class IDcomput(object):
def __init__(self):
self.features = []

def getdistance(self, x, y):
”’
input:
x: array(n, 2)
y: array(m, 2)

output:
array(n, m)
”’
x = x[:,np.newaxis,:]
y = y[np.newaxis,:,:]

x = np.repeat(x, y.shape[0], axis = 1)
y = np.repeat(y, x.shape[1], axis = 0)
dis = (x-y)**2

dis = np.sqrt(dis[:,:,0]+dis[:,:,1])
return dis

def __call__(self, X):
”’
input:
X: array(n, 2) current bbox array eg. [num of bbox, center_xy]
output:
array(n) current id of bbox eg. [id of bbox]
”’
if len(self.features) == 0:
self.features = X
return np.array([i for i in range(len(X))])

elif len(self.features) == len(X):
dis = self.getdistance(self.features, X)
feature_ids = linear_sum_assignment(dis)
feature_ids = feature_ids[1]

elif len(self.features) < len(X):
dis = self.getdistance(self.features, X)
feature_ids = linear_sum_assignment(dis)
feature_ids = feature_ids[1]
feature_ids_rest = set([i for i in range(len(X))]).difference(set(feature_ids))
feature_ids = np.array(list(feature_ids) + list(feature_ids_rest))
temp_feat = X
temp_feat[0:len(self.features)] = self.features
self.features = temp_feat
else:
dis = self.getdistance(X, self.features)
ids = linear_sum_assignment(dis)
ids = ids[1]
self.features[ids] = X
return ids

feature_ids = feature_ids.argsort()
ids = np.array([i for i in range(len(X))])
ids = ids[feature_ids]
self.features[ids] = X

return ids

if __name__ == ‘__main__’:
idcomput = IDcomput()
x = np.array([[1,2],[0,1]])
y = np.array([[0,1], [3,2], [1,2]])
z = np.array([[0,1], [3,2]])

print(‘x’, idcomput(x))
print(‘y’,idcomput(y))
print(‘z’,idcomput(z))

1.3 结果评估
1.3.1 Confusion Matrix
import os
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np

def plot_confusion_matrix(cm, labels_name, title,rotation=45, cmap = plt.cm.Wistia,fontsize=11):
cm = cm.astype(‘float’) / cm.sum(axis=1)[:,np.newaxis]
# plt.figure(figsize=(8,8.5))
plt.imshow(cm, interpolation=’nearest’,cmap = cmap) # ,cmap = plt.cm.Oranges cmap = plt.cm.Wistia
plt.title(title)
plt.colorbar()
num_local = np.array(range(len(labels_name)))
plt.xticks(num_local, labels_name,rotation = rotation)
plt.yticks(num_local, labels_name)

plt.ylabel(‘True label’)
plt.xlabel(“Predicted label”)
plt.subplots_adjust(bottom=0.15)

x, y = np.meshgrid(num_local, num_local)
for x_val, y_val in zip(x.flatten(),y.flatten()):
c = cm[y_val][x_val]
if c>0.01:
plt.text(x_val,y_val,”{:.2f}”.format(c),fontsize=fontsize,va=’center’,ha=’center’)

def autodraw_cm(y_true, y_pred, labels_name, save_path=”./ResNet18_cm.png”, title=”ResNet18_cm”,**kwargs):
cm = confusion_matrix(y_true,y_pred)
# print(cm)
plot_confusion_matrix(cm, labels_name,title, **kwargs)
plt.savefig(save_path)
plt.cla()
plt.clf()

if __name__ == ‘__main__’:
y_true = [1, 0]
y_pred = [1, 1]
labels_name = [‘a’,’b’]
autodraw_cm(y_true,y_pred,labels_name)