硬核源码剖析 Celery Beat 调度原理
硬核源码剖析 Celery Beat 调度原理
有*调研:参与调研问卷,赢*品!
Intel 联手 CSDN 回馈拜百万开发者,限量*品,参与调研问卷得好*!
Celery 是一个简单、灵活且可靠的,处理大量消息的分布式系统,它是一个专注于实时处理的任务队列,同时也支持任务调度。
为了讲解 Celery Beat 的周期调度机制及实现原理,我们会基于Django从制作一个简单的周期任务开始,然后一步一步拆解 Celery Beat 的源代码。
相关前置应用知识,可以阅读以下文章:
1. 实战教程!Django Celery 异步与定时任务
2. Python Celery异步快速下载股票数据
1.Celery 简单周期任务示例
在 celery_app.tasks.py 中添加如下任务:
@shared_task
def pythondict_task():
print(“pythondict_task”)
在 django.celery.py 文件中添加如下配置:
from celery_django import settings
from datetime import timedelta
app.autodiscover_tasks(lambda : settings.INSTALLED_APPS)
CELERYBEAT_SCHEDULE = {
‘pythondict_task’: {
‘task’: ‘celery_app.tasks.pythondict_task’,
‘schedule’: timedelta(seconds=3),
},
}
app.conf.update(CELERYBEAT_SCHEDULE=CELERYBEAT_SCHEDULE)
至此,配置完成,此时,先启动 Celery Beat 定时任务命令:
celery beat -A celery_django -S django
然后打开第二个终端进程启动消费者:
celery -A celery_django worker
此时在worker的终端上就会输出类似如下的信息:
[2021-07-11 16:34:11,546: WARNING/PoolWorker-3] pythondict_task
[2021-07-11 16:34:11,550: WARNING/PoolWorker-4] pythondict_task
[2021-07-11 16:34:11,551: WARNING/PoolWorker-2] pythondict_task
[2021-07-11 16:34:11,560: WARNING/PoolWorker-1] pythondict_task
看到结果正常输出,说明任务成功定时执行。
2.源码剖析
为了明白 Celery Beat 是如何实现周期任务调度的,我们需要从 Celery 源码入手。
当你执行 Celery Beat 启动命令的时候,到底发生了什么?
celery beat -A celery_django -S django
当你执行这个命令的时候,Celery/bin/celery.py 中的 CeleryCommand 类接收到命令后,会选择 beat 对应的类执行如下代码:
# Python 实用宝典
# https://pythondict.com
from celery.bin.beat import beat
class CeleryCommand(Command):
commands = {
# …
‘beat’: beat,
# …
}
# …
def execute(self, command, argv=None):
try:
cls = self.commands[command]
except KeyError:
cls, argv = self.commands[‘help’], [‘help’]
cls = self.commands.get(command) or self.commands[‘help’]
try:
return cls(
app=self.app, on_error=self.on_error,
no_color=self.no_color, quiet=self.quiet,
on_usage_error=partial(self.on_usage_error, command=command),
).run_from_argv(self.prog_name, argv[1:], command=argv[0])
except self.UsageError as exc:
self.on_usage_error(exc)
return exc.status
except self.Error as exc:
self.on_error(exc)
return exc.status
此时cls对应的是beat类,通过查看位于bin/beat.py中的 beat 类可知,该类只重写了run方法和add_arguments方法。
所以此时执行的 run_from_argv 方法是 beat 继承的 Command 的 run_from_argv 方法:
# Python 实用宝典
# https://pythondict.com
def run_from_argv(self, prog_name, argv=None, command=None):
return self.handle_argv(prog_name, sys.argv if argv is None else argv, command)
该方法中会调用 Command 的 handle_argv 方法,而该方法在经过相关参数处理后会调用 self(*args, **options) 到 __call__ 函数:
# Python 实用宝典
# https://pythondict.com
def handle_argv(self, prog_name, argv, command=None):
“””Parse command-line arguments from “argv“ and dispatch
to :meth:`run`.
:param prog_name: The program name (“argv[0]“).
:param argv: Command arguments.
Exits with an error message if :attr:`supports_args` is disabled
and “argv“ contains positional arguments.
“””
options, args = self.prepare_args(
*self.parse_options(prog_name, argv, command))
return self(*args, **options)
Command 类的 __call__函数:
# Python 实用宝典
# https://pythondict.com
def __call__(self, *args, **kwargs):
random.seed() # maybe we were forked.
self.verify_args(args)
try:
ret = self.run(*args, **kwargs)
return ret if ret is not None else EX_OK
except self.UsageError as exc:
self.on_usage_error(exc)
return exc.status
except self.Error as exc:
self.on_error(exc)
return exc.status
可见,在该函数中会调用到run方法,此时调用的run方法就是beat类中重写的run方法,查看该方法:
# Python 实用宝典
# https://pythondict.com
class beat(Command):
“””Start the beat periodic task scheduler.
Examples::
celery beat -l info
celery beat -s /var/run/celery/beat-schedule –detach
celery beat -S djcelery.schedulers.DatabaseScheduler
“””
doc = __doc__
enable_config_from_cmdline = True
supports_args = False
def run(self, detach=False, logfile=None, pidfile=None, uid=None,
gid=None, umask=None, working_directory=None, **kwargs):
# 是否开启后台运行
if not detach:
maybe_drop_privileges(uid=uid, gid=gid)
workdir = working_directory
kwargs.pop(‘app’, None)
# 设定偏函数
beat = partial(self.app.Beat,
logfile=logfile, pidfile=pidfile, **kwargs)
if detach:
with detached(logfile, pidfile, uid, gid, umask, workdir):
return beat().run() # 后台运行
else:
return beat().run() # 立即运行
这里引用了偏函数的知识,偏函数就是从基函数创建一个新的带默认参数的函数,详细可见廖雪峰老师的介绍:
https://www.liaoxuefeng.com/wiki/1016959663602400/1017454145929440
可见,此时创建了app的Beat方法的偏函数,并通过 .run 函数执行启动 beat 进程,首先看看这个 beat 方法:
# Python 实用宝典
# https://pythondict.com
@cached_property
def Beat(self, **kwargs):
# 导入celery.apps.beat:Beat类
return self.subclass_with_self(‘celery.apps.beat:Beat’)
可以看到此时就实例化了 celery.apps.beat 中的 Beat 类,并调用了该实例的 run 方法:
# Python 实用宝典
# https://pythondict.com
def run(self):
print(str(self.colored.cyan(
‘celery beat v{0} is starting.’.format(VERSION_BANNER))))
# 初始化loader
self.init_loader()
# 设置进程
self.set_process_title()
# 开启任务调度
self.start_scheduler()
init_loader 中,会导入默认的modules,此时会引入相关的定时任务,这些不是本文重点。我们重点看 start_scheduler 是如何开启任务调度的:
# Python 实用宝典
# https://pythondict.com
def start_scheduler(self):
c = self.colored
if self.pidfile: # 是否设定了pid文件
platforms.create_pidlock(self.pidfile) # 创建pid文件
# 初始化service
beat = self.Service(app=self.app,
max_interval=self.max_interval,
scheduler_cls=self.scheduler_cls,
schedule_filename=self.schedule)
# 打印启动信息
print(str(c.blue(‘__ ‘, c.magenta(‘-‘),
c.blue(‘ … __ ‘), c.magenta(‘-‘),
c.blue(‘ _\n’),
c.reset(self.startup_info(beat)))))
# 开启日志
self.setup_logging()
if self.socket_timeout:
logger.debug(‘Setting default socket timeout to %r’,
self.socket_timeout)
# 设置超时
socket.setdefaulttimeout(self.socket_timeout)
try:
# 注册handler
self.install_sync_handler(beat)
# 开启beat
beat.start()
except Exception as exc:
logger.critical(‘beat raised exception %s: %r’,
exc.__class__, exc,
exc_info=True)
我们看下beat是如何开启的:
# Python 实用宝典
# https://pythondict.com
def start(self, embedded_process=False, drift=-0.010):
info(‘beat: Starting…’)
# 打印*大间隔时间
debug(‘beat: Ticking with max interval->%s’,
humanize_seconds(self.scheduler.max_interval))
# 通知注册该signal的函数
signals.beat_init.send(sender=self)
if embedded_process:
signals.beat_embedded_init.send(sender=self)
platforms.set_process_title(‘celery beat’)
try:
while not self._is_shutdown.is_set():
# 调用scheduler.tick()函数检查还剩多余时间
interval = self.scheduler.tick()
interval = interval + drift if interval else interval
# 如果大于0
if interval and interval > 0:
debug(‘beat: Waking up %s.’,
humanize_seconds(interval, prefix=’in ‘))
# 休眠
time.sleep(interval)
if self.scheduler.should_sync():
self.scheduler._do_sync()
except (KeyboardInterrupt, SystemExit):
self._is_shutdown.set()
finally:
self.sync()
这里重点看 self.scheduler.tick() 方法:
# Python 实用宝典
# https://pythondict.com
def tick(self):
“””Run a tick, that is one iteration of the scheduler.
Executes all due tasks.
“””
remaining_times = []
try:
# 遍历每个周期任务设定
for entry in values(self.schedule):
# 下次运行时间
next_time_to_run = self.maybe_due(entry, self.publisher)
if next_time_to_run:
remaining_times.append(next_time_to_run)
except RuntimeError:
pass
return min(remaining_times + [self.max_interval])
这里通过 self.schedule 拿到了所有存放在用 shelve 写入的 celerybeat-schedule 文件的定时任务,遍历所有定时任务,调用 self.maybe_due 方法:
# Python 实用宝典
# https://pythondict.com
def maybe_due(self, entry, publisher=None):
# 是否到达运行时间
is_due, next_time_to_run = entry.is_due()
if is_due:
# 打印任务发送日志
info(‘Scheduler: Sending due task %s (%s)’, entry.name, entry.task)
try:
# 执行任务
result = self.apply_async(entry, publisher=publisher)
except Exception as exc:
error(‘Message Error: %s\n%s’,
exc, traceback.format_stack(), exc_info=True)
else:
debug(‘%s sent. id->%s’, entry.task, result.id)
return next_time_to_run
可以看到,此处会判断任务是否到达定时时间,如果是的话,会调用 apply_async 调用Worker执行任务。如果不是,则返回下次运行时间,让 Beat 进程进行 Sleep,减少进程资源消耗。
到此,我们就讲解完了 Celery Beat 在周期定时任务的检测调度机制,怎么样,小伙伴们有没有什么疑惑?可以在下方留言区留言一起讨论哦。