内容审核:用python实现内容鉴黄

随着网络监管越来越严格,UGC网站都需要针对用户生产的内容,进行审核。

目前大家一般是机器和人工审核的双重过滤。针对大型的UGC网站,如果全部人工审核是不现实的,需要花费大量的人工成本,所以机器审核尤其重要。

废话不多说,给大家介绍下怎么利用python进行鉴黄。

思路
下面给大家说明下图片审核的思路。

视频审核与图片审核是通用的。视频内容实则由音频内容、视频画面内容两个对象组成,视频画面内容的机器审核,业界目前常采用截取画面帧上传识别,*终复用的是图片识别通道对场景、人物、物品进行判断是否违规。

遍历图片每一个像素,进行颜色分区、并记录是否为肤色;

皮肤区域小于 3 个,不是色情;

如果皮肤区域与整个图像的比值小于 15%,那么不是色情图片;

如果*大皮肤区域小于总皮肤面积的 45%,不是色情图片;

皮肤区域数量超过 60个,不是色情图片;

其它情况为色情图片。

关键代码
# 分析区域
def _analyse_regions(self):
# 如果皮肤区域小于 3 个,不是色情
if len(self.skin_regions) < 3:
self.message = “Less than 3 skin regions ({_skin_regions_size})”.format(
_skin_regions_size=len(self.skin_regions))
self.result = False
return self.result

# 为皮肤区域排序
self.skin_regions = sorted(self.skin_regions, key=lambda s: len(s),
reverse=True)

# 计算皮肤总像素数
total_skin = float(sum([len(skin_region) for skin_region in self.skin_regions]))

# 如果皮肤区域与整个图像的比值小于 15%,那么不是色情图片
if total_skin / self.total_pixels * 100 < 15:
self.message = “Total skin percentage lower than 15 ({:.2f})”.format(total_skin / self.total_pixels * 100)
self.result = False
return self.result

# 如果*大皮肤区域小于总皮肤面积的 45%,不是色情图片
if len(self.skin_regions[0]) / total_skin * 100 < 45:
self.message = “The biggest region contains less than 45 ({:.2f})”.format(len(self.skin_regions[0]) / total_skin * 100)
self.result = False
return self.result

# 皮肤区域数量超过 60个,不是色情图片
if len(self.skin_regions) > 60:
self.message = “More than 60 skin regions ({})”.format(len(self.skin_regions))
self.result = False
return self.result

# 其它情况为色情图片
self.message = “色情图片”
self.result = True
return self.result
运行效果

%title插图%num