逆波兰表达式求值(JS实现)

1 题目
根据 逆波兰表示法,求表达式的值。
有效的运算符包括 +, -, , / 。每个运算对象可以是整数,也可以是另一个逆波兰表达式
说明:
整数除法只保留整数部分。
给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入: [“2”, “1”, “+”, “3”, “”]
输出: 9
解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入: [“4”, “13”, “5”, “/”, “+”]
输出: 6
解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入: [“10”, “6”, “9”, “3”, “+”, “-11”, “”, “/”, “”, “17”, “+”, “5”, “+”]
输出: 22
解释:
该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。

2 思路
这道题本身不难,就是借助一个栈来实现计算,注意减法和除法运算时弹出两个数时的先后顺序

3代码
/**
* @param {string[]} tokens
* @return {number}
*/
var evalRPN = function(tokens) {
const stack = [];

while(tokens.length > 0) {
let flag = tokens.shift();
let handleFlag = parseInt(flag);
if (isNaN(handleFlag)) {
let num2 = stack.pop();
let num1 = stack.pop();
switch (flag) {
case ‘+’:
stack.push(num1 + num2);
break;
case ‘-‘:
stack.push(num1 – num2);
break;
case ‘*’:
stack.push(num1 * num2);
break;
case ‘/’:
stack.push(parseInt((num1 / num2)));
break;
}
} else {
stack.push(handleFlag);
}
}

return stack[0];
};